Low-noise wide dynamic range readout circuit for multi-stage microfluidic cell sorting systems

Author(s):  
Benjamin R. Geheb ◽  
Meggie M.G. Grafton ◽  
JaeHyuk Jang ◽  
Lisa M. Reece ◽  
James F. Leary ◽  
...  
2020 ◽  
Vol 10 (3) ◽  
pp. 23
Author(s):  
Wei Wang ◽  
Sameer Sonkusale

Designing low-noise current readout circuits at high speed is challenging. There is a need for preamplification stages to amplify weak input currents before being processed by conventional integrator based readout. However, the high current gain preamplification stage usually limits the dynamic range. This article presents a 140 dB input dynamic range low-noise current readout circuit with a noise floor of 10 fArms/sq(Hz). The architecture uses a programmable bidirectional input current gain stage followed by an integrator-based analog-to-pulse conversion stage. The programmable current gains setting enables one to achieve higher overall input dynamic range. The readout circuit is designed and in 0.18 μm CMOS and consumes 10.3 mW power from a 1.8 V supply. The circuit has been verified using post-layout simulations.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Yuwadee Sundarasaradula ◽  
Apinunt Thanachayanont

This paper presents the design and realization of a low-noise, low-power, wide dynamic range CMOS logarithmic amplifier for biomedical applications. The proposed amplifier is based on the true piecewise linear function by using progressive-compression parallel-summation architecture. A DC offset cancellation feedback loop is used to prevent output saturation and deteriorated input sensitivity from inherent DC offset voltages. The proposed logarithmic amplifier was designed and fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS technology. The prototype chip includes six limiting amplifier stages and an on-chip bias generator, occupying a die area of 0.027[Formula: see text]mm2. The overall circuit consumes 9.75[Formula: see text][Formula: see text]W from a single 1.5[Formula: see text]V power supply voltage. Measured results showed that the prototype logarithmic amplifier exhibited an 80[Formula: see text]dB input dynamic range (from 10[Formula: see text][Formula: see text]V to 100[Formula: see text]mV), a bandwidth of 4[Formula: see text]Hz–10[Formula: see text]kHz, and a total input-referred noise of 5.52[Formula: see text][Formula: see text]V.


2015 ◽  
Author(s):  
Sumeet Shrestha ◽  
Hiroki Kamehama ◽  
Shoji Kawahito ◽  
Keita Yasutomi ◽  
Keiichiro Kagawa ◽  
...  

2019 ◽  
Vol 279 ◽  
pp. 255-266 ◽  
Author(s):  
Alexandra Dudina ◽  
Florent Seichepine ◽  
Yihui Chen ◽  
Alexander Stettler ◽  
Andreas Hierlemann ◽  
...  

2017 ◽  
Vol 11 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Hyunwoo Son ◽  
Hwasuk Cho ◽  
Jahyun Koo ◽  
Youngwoo Ji ◽  
Byungsub Kim ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Yeong Seon Kim ◽  
Doo Hyung Woo ◽  
Young Min Jo ◽  
Sang Gu Kang ◽  
Hee Chul Lee

Sign in / Sign up

Export Citation Format

Share Document