Suppression of Residual Noise From Speech Signals Using Empirical Mode Decomposition

2009 ◽  
Vol 16 (1) ◽  
pp. 2-5 ◽  
Author(s):  
T. Hasan ◽  
M.K. Hasan
2011 ◽  
Vol 121-126 ◽  
pp. 815-819 ◽  
Author(s):  
Yu Qiang Qin ◽  
Xue Ying Zhang

Ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the emotional envelop and the number of emotional ensemble trials. At the same time, the proposed technique has been utilized for four kinds of emotional(angry、happy、sad and neutral) speech signals, and compute the number of each emotional ensemble trials. We obtain an emotional envelope by transforming the IMFe of emotional speech signals, and obtain a new method of emotion recognition according to different emotional envelop and emotional ensemble trials.


Author(s):  
Yaguo Lei ◽  
Zongyao Liu ◽  
Julien Ouazri ◽  
Jing Lin

Ensemble empirical mode decomposition (EEMD) represents a valuable aid in empirical mode decomposition (EMD) and has been widely used in fault diagnosis of rolling element bearings. However, the intrinsic mode functions (IMFs) generated by EEMD often contain residual noise. In addition, adding different white Gaussian noise to the signal to be analyzed probably produces a different number of IMFs, and different number of IMFs makes difficult the averaging. To alleviate these two drawbacks, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was previously presented. Utilizing the advantages of CEEMDAN in extracting weak characteristics from noisy signals, a new fault diagnosis method of rolling element bearings based on CEEMDAN is proposed. With this method, a particular noise is added at each stage and after each IMF extraction, a unique residue is computed. In this way, this method solves the problem of the final averaging and obtains IMFs with less noise. A simulated signal is used to illustrate the effectiveness of the proposed method, and the decomposition results show that the method obtains more accurate IMFs than the EEMD. To further demonstrate the proposed method, it is applied to fault diagnosis of locomotive rolling element bearings. The diagnosis results prove that the method based on CEEMDAN may reveal the fault characteristic information of rolling element bearings better.


2021 ◽  
Vol 44 (3) ◽  
pp. 343-349
Author(s):  
Mohammed Usman ◽  
Mohammed Zubair ◽  
Hany S. Hussein ◽  
Mohd Wajid ◽  
Mohammed Farrag ◽  
...  

2017 ◽  
Vol 4 (8) ◽  
pp. 170616 ◽  
Author(s):  
Vanraj ◽  
S. S. Dhami ◽  
B. S. Pabla

Gearbox plays most essential role in the modern machinery for transmitting the required torque along with motion and contributes to wide range of applications. Any failure in gearbox components affects the productivity and efficiency of the system. Most machine breakdowns related to gears are a result of improper operating conditions and loading, hence lead to failure of the whole mechanism. Ensemble Empirical Mode Decomposition (EEMD) comprises advancement and valuable addition in Empirical Mode Decomposition (EMD) and has been widely used in fault detection of rotating machines. However, intrinsic mode functions (IMFs) produced by EEMD often carry the residual noise. Also, the produced IMFs are different in number due to addition of white Gaussian noise, which leads to final averaging problem. To alleviate these drawbacks, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was previously presented. This paper describes and presents the implementation of CEEMDAN for fault diagnosis of simulated local defects using sound signals in a fixed-axis gearbox. Statistical parameters are extracted from decomposed sound signals for different simulated faults. Results show the effectiveness of CEEMDAN over EEMD in order to obtain more accurate IMFs and fault severity.


Sign in / Sign up

Export Citation Format

Share Document