Modeling of multi-cavity composite soft pneumatic actuators

Author(s):  
Zhisheng Zhang ◽  
Qi Zhang ◽  
Min Dai ◽  
Xiqi Ding ◽  
Zhijie Xia
Keyword(s):  
Author(s):  
Feifei Chen ◽  
Yunpeng Miao ◽  
Guoying Gu ◽  
Xiangyang Zhu

Author(s):  
Shitong Chen ◽  
Feifei Chen ◽  
Zizheng Cao ◽  
Yusheng Wang ◽  
Yunpeng Miao ◽  
...  

2021 ◽  
Vol 42 (2) ◽  
pp. 159-172
Author(s):  
Qiang Zhang ◽  
Shayuan Weng ◽  
Zeang Zhao ◽  
H. J. Qi ◽  
Daining Fang

2012 ◽  
Vol 271-272 ◽  
pp. 1742-1749
Author(s):  
Peng Cheng Huang ◽  
Qing Hua Yang ◽  
Guan Jun Bao ◽  
Li Bin Zhang

Aimed at existing problems on the bending performance of pneumatic bending joint, a new type of pneumatic bending joint is proposed in this paper. Double flexible pneumatic actuators are used as actuating drivers. Based on the first law of thermodynamics and the joint dynamic equation, the angle dynamic model is established and analyzed. Moreover simplified model is proposed. Meanwhile, its dynamic characteristic is analyzed through simulation analysis. The simulation suggests the following results: in the gas-filled phase, the joint’s pressure response time is about 10ms; while it is about 60ms in the gas-escape phase; and the angle response time of joint is 10 to 20ms. When the joint damping coefficient is increasing, this value will also increase.


2013 ◽  
Vol 460 ◽  
pp. 1-12 ◽  
Author(s):  
Alexander Hošovský ◽  
Kamil Židek

Pneumatic artificial muscles belong to a category of nonconventional pneumatic actuators that are distinctive for their high power/weight ratio, simple construction and low price and maintenance costs. As such, pneumatic artificial muscles represent an alternative type of pneumatic actuator that could replace the traditional ones in certain applications. Due to their specific construction, PAM-based systems have nonlinear characteristics which make it more difficult to design a control system with good performance. In the paper, a gray-box model (basically analytical but with certain experimental parts) of the one degree-of-freedom PAM-based actuator is derived. This model interconnects the description of pneumatic and mechanical part of the system through a set of several nonlinear differential equations and its main purpose is the design of intelligent control system in simulation environment. The model is validated in both open-loop and closed-loop mode using the measurements on real plant and the results confirm that model performance is in good agreement with the performance of real actuator.


Author(s):  
Nianfeng Wang ◽  
Bicheng Chen ◽  
Xiandong Ge ◽  
Xianmin Zhang ◽  
Wenbin Wang

AbstractCrawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 161
Author(s):  
Miranda Fateri ◽  
João Falcão Carneiro ◽  
Achim Frick ◽  
João Bravo Pinto ◽  
Fernando Gomes de Almeida

In this paper, endurance of peristaltic linear pneumatic actuators was studied using different hose geometries. Towards this goal, different hose geometries were additively manufactured using Fused Layer Manufacturing techniques of Thermoplastic Polyurethane Elastomer. Material properties of the elastomer were studied using Differential Scanning Calorimetry and the tensile test. The relations between the sample’s print temperature and build direction on the actuator endurance were investigated. Lastly, the relation between the geometry design of the PLPA actuator and its endurance is also discussed. Based on this methodology, authors present results showing that the use of a customized shaped hose with geometrical reinforcement at sides leads to a considerable rise in the hose endurance, when compared with the conventional circular design.


Author(s):  
Khaled Laib ◽  
Minh Tu Pham ◽  
Xuefang LIN-SHI ◽  
Redha Meghnous

Abstract This paper presents an averaged state model and the design of nonlinear observers for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The elaborated averaged state model has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a high gain observer and a sliding mode observer are designed using the piston position and the pressure measurements in one of the chambers. Finally, their closed-loop performances are verified and compared on an experimental benchmark.


Sign in / Sign up

Export Citation Format

Share Document