An update on microstrip antenna theory and design including some novel feeding techniques

1986 ◽  
Vol 28 (5) ◽  
pp. 4-9 ◽  
Author(s):  
D. Pozar
2011 ◽  
Vol 143-144 ◽  
pp. 32-36
Author(s):  
Su Ling Wang ◽  
Ya Ting Gan ◽  
Guo Dong Wang

Microstrip Antennas have many applications in various communication systems. A new configuration of microstrip antenna is proposed in this paper. The microstrip antenna has two radiation ports. Through changing the radiation intensity of the two ports, the proposed structure breaks the balance of the radiation of the microstrip antenna therefore the radiation pattern would be changed corresponsively. Theory analysis is carried out based on microstrip antenna theory. Both analysis and simulation show that the new configuration can realize the radiation pattern controlled and the theory analysis agreed very well with simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Aixin Chen ◽  
Chuo Yang ◽  
Zhizhang Chen ◽  
Yanjun Zhang ◽  
Yingyi He

Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP) over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.


2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Naw Khu Say Wah ◽  
Hla Myo Tun

This paper presents a short microstrip patch antenna and analyzes its characteristics in simulation and measured ways. The proposed antenna is meant to be used from 2.4 to 2.5 GHz at the resonant frequency of 2.45 GHz Industrial, Science, and Medical (ISM) spectrum. Besides, insert a diagonal slot in the main patch, and two cutting edges with V-slit gives the antenna to propagate a circular polarization pattern. The paper aims to start learning a simple C.P. patch antenna supported the basic concept of microstrip antenna theory. A single-feed C.P., truncated corners, and slit and slot methods are employed to model the antenna apart from its parametric study. The substrate material of the developed antenna is FR-4, and it's a relative permittivity of 4.4. The antenna incorporates a compact overall size of 0.389λ0 × 0.389λ0 × 0.013λ0, where λ0 is that the corresponding free-space wavelength at 2.45 GHz. FEKO has been used for not only designing the antenna model but also analyzing its performances. Simulated and measured results have reported that the antenna can work in ISM bands (2.42-2.5 GHz) with VSWR< 2, low realized gain, and the limited 3-dB axial ratio at 2.45 GHz.


2018 ◽  
Vol 7 (2) ◽  
pp. 41-47 ◽  
Author(s):  
S. B. Behera ◽  
D. Barad ◽  
S. Behera

In this study, a triple-band suspended microstrip antenna with symmetrical U-slots is proposed for modern wireless communication systems. The antenna is specifically designed to acquire application in WLAN and WiMAX communication. Symmetrical U-slots in the radiator patch increase the number of resonances and improve the gain response. An appropriate air height was maintained between the ground plane and the radiator patch layer for improving bandwidth operation. The impedance characteristics of the antenna are enhanced using probe feeding techniques. The proposed compact antenna is designed on a single dielectric substrate of (30×25×1.56) mm3 . Parametric analysis of the proposed structure has been realized using IE3D software. This prototype exhibits maximum impedance bandwidth of 750 MHz and gain response of 7.28 dBi. The performance of the structure at three resonating bands i.e., at 3.3 GHz, 3.78 GHz and 5.3 GHz facilitate it to be applicable for WLAN/WiMAX systems.


Sign in / Sign up

Export Citation Format

Share Document