An advanced location information management scheme for supporting flexible service provisioning in reconfigurable mobile networks

2003 ◽  
Vol 41 (2) ◽  
pp. 88-98 ◽  
Author(s):  
S. Panagiotakis ◽  
A. Alonistioti ◽  
L. Merakos
2009 ◽  
pp. 650-681
Author(s):  
Samuel Pierre

This chapter analyzes and proposes some mobility management models and schemes by taking into account their capability to reduce search and location update costs in wireless mobile networks. The first model proposed is called the built-in memory model; it is based on the architecture of the IS-41 network and aims at reducing the home-location-register (HLR) access overhead. The performance of this model was investigated by comparing it with the IS-41 scheme for different call-to-mobility ratios (CMRs). Experimental results indicate that the proposed model is potentially beneficial for large classes of users and can yield substantial reductions in total user-location management costs, particularly for users who have a low CMR. These results also show that the cost reduction obtained on the location update is very significant while the extra costs paid to locate a mobile unit simply amount to the costs of crossing a single pointer between two location areas. The built-in memory model is also compared with the forwarding pointers’ scheme. The results show that this model consistently outperforms the forwarding pointers’ strategy. A second location management model to manage mobility in wireless communications systems is also proposed. The results show that significant cost savings can be obtained compared with the IS-41 standard location-management scheme depending on the value of the mobile units’ CMR.


2020 ◽  
Vol 10 (12) ◽  
pp. 4264
Author(s):  
Yeunwoong Kyung ◽  
Tae-Kook Kim

Handover support is one of the important issues in mobile networks to guarantee the quality of service (QoS) requirements for mobile users. Alongside the development of network technologies, handover management to provide service continuity has been researched and applied for the Internet or cellular networks such as 3G/4G/5G. However, each network paradigm provides its own individual handover management system, even though there are different kinds of QoS requirements for various mobile services. This causes inefficient network resource utilization from the network operators’ perspectives. Therefore, this paper proposes a QoS-aware flexible mobility management scheme for software-defined networking (SDN)-based mobile networks. The proposed scheme classifies flows into four classes based on the QoS requirements of services in terms of delay and loss tolerance. According to the classified service characteristics, it provides a differential handover method for each flow class to support efficient network operation without any service degradation by interacting between the forwarding plane nodes and SDN controller. The performance analysis shows that the proposed scheme enables flexible network resource utilization, satisfying the QoS requirements for each class well compared to the conventional schemes that only consider their own individual handover procedure.


Sign in / Sign up

Export Citation Format

Share Document