From the Application Layer to the Hardware How Energy Efficiency Permeates Fully the Network Design Process

Author(s):  
A. Ephremides
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahryar Habibi

Purpose The purpose of this study is to design a zero-energy home, which is known to be capable of balancing its own energy production and consumption close to zero. Development of low-energy homes and zero-net energy houses (ZEHs) is vital to move toward energy efficiency and sustainability in the built environment. To achieve zero or low energy targets in homes, it is essential to use the design process that minimizes the need for active mechanical systems. Design/methodology/approach The methodology discussed in this paper consists of an interfacing building information modeling (BIM) tool and a simulation software to determine the potential influence of phase change materials on designing zero-net energy homes. Findings BIM plays a key role in advancing methods for architects and designers to communicate through a common software platform, analyze energy performance through all stages of the design and construction process and make decisions for improving energy efficiency in the built environment. Originality/value This paper reviews the literature relevant to the role of BIM in helping energy simulation for the performance of residential homes to more advanced levels and in modeling the integrated design process of ZEHs.


2019 ◽  
Vol 2019 ◽  
pp. 1-33
Author(s):  
Muwonge Ssajjabbi Bernard ◽  
Tingrui Pei ◽  
Kimbugwe Nasser

Wireless multimedia sensor networks (WMSNs) have got capacity to collect both scalar sensor data and multidimensional sensor data. It is the basis for the Internet of things (IoT). Quality of service (QoS) pointers like energy efficiency, reliability, bit error rate, and latency can be helpful in data collection estimation over a network. In this paper, we review a number of QoS strategies for WMSNs and wireless sensor networks (WSNs) in the IoT context from the perspective of the MAC and application layers as well as the cross-layer paradigm. Considering the MAC layer, since it is responsible for regulating the admittance to the shared medium and transmission reliability and efficiency through error correction in wireless transmissions, and for performance of framing, addressing, and flow control, the MAC protocol design greatly affects energy efficiency. We thus review a number of protocols here including contention-free and contention-based protocols as well as the hybrid of these. This paper also surveys a number of state-of-the-art machine-to-machine, publish/subscribe, and request/response protocols at the application layer. Cross-layer QoS strategies are very vital when it comes to system optimization. Many cross-layer strategies have been reviewed. For these QoS strategies, the challenges and opportunities are reviewed at each of the layers considered. Lastly, the future research directions for QoS strategies are discussed for research and application before concluding this paper.


Author(s):  
Varuneswara Panyam ◽  
Tirth Dave ◽  
Astrid Layton

Ecology has acted as a source for sound design principles and studies of ecosystems have examined how ecological principles can enhance sustainable human network design. Engineered systems are often designed for maximum performance, but in many cases, robustness is lost due to unwanted variations in inputs or efficiency. Taguchi’s signal to noise ratio and other quality engineering principles are well known fundamentals in the field of robust design. In this paper, we will introduce flow-based metrics from ecological network analysis (ENA) for robustness, efficiency, and redundancy. Ecosystem robustness is related to the balance between flow path diversity and system delivery efficiency. Systems with diverse flows are more resilient to a disturbance since there are redundant pathways, but are inefficient because they contain many flow paths with the same endpoints. Efficient systems are better able to transfer material and energy, but this is at the cost of fewer pathways so the system is brittle. Thus to survive a disturbance, an ecosystem system balances redundancy with efficiency. Thermodynamic power cycles are used to understand the relationship between energy efficiency, measured using first law efficiency, and ecological robustness and an ecological balance of efficiency to redundancy (as measured by ascendency vs development capacity). The result highlights the importance of understanding differences in the meaning of efficiency between two fields, and that from an engineering standpoint robustness does not have to be sacrificed to obtain energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document