Robert L. Steigerwald: From a Semiconductor Technician to an Authority in Power Conversion and Control [Member and Industry Profile]

2017 ◽  
Vol 4 (3) ◽  
pp. 57-61
Author(s):  
Ashok Bindra
Author(s):  
Petrus D. Kemp ◽  
Chris Nieuwoudt

A large interest in High Temperature Gas-cooled Reactors (HTGR) has been shown in recent years. HTGR power plants show a number of advantages over existing technology including improved safety, modular design and high temperatures for process heat applications. HTGR plants with closed loop direct cycle power conversion units have unique transient responses which is different from existing nuclear plants as well as conventional non-nuclear power plants. The operation and control for a HTGR power plant therefore poses new and different challenges. This paper describes the modes of operation for the Pebble Bed Modular Reactor (PBMR) demonstration plant. The PBMR demonstration plant is an advanced helium-cooled, graphite-moderated HTGR consisting of a closed loop direct cycle power conversion unit. The use of transient analysis simulation makes it possible to develop effective control strategies and design controllers for use in the power conversion unit as well as the reactor. In addition to plant controllers the operator tasks and operational technical specifications can be developed and evaluated making use of transient analysis simulation of the plant together with the control system. The main challenges in the operation and control of the reactor and power conversion unit are highlighted with simulation results. Control strategies in different operating regions are shown and results for the power conversion unit start-up transition and the loss of the grid connection during power operation are presented.


Author(s):  
Do-Yun Kim ◽  
Il-Kuen Won ◽  
Young-Hee Jang ◽  
Hyun-Seok Park ◽  
Young-Real Kim ◽  
...  

Author(s):  
L.F. Casey ◽  
J. Ofori-Tenkorang ◽  
M.F. Schlecht

1991 ◽  
Vol 6 (4) ◽  
pp. 749-758 ◽  
Author(s):  
L.F. Casey ◽  
J. Ofori-Tenkorang ◽  
M.F. Schlect

Author(s):  
Shankar Kumar ◽  
N.K Singh

The demand for safe and reliable electricity increases, our infrastructure continues to evolve and innovate in order to accommodate such growth. The advantages of energy storage can traverse power age, through transmission and dissemination, and right to clients. An energy storage framework is essential for pay of the active-power change; it can alleviate the unsettling influence and keep up the dependability of voltage and recurrence. Power conversion framework (PCS), as an interface between storage framework and open network, assumes an extraordinary job in accomplishing the power move between storage framework and open matrix. This paper summarize the different research dependent on power conversion converter for battery energy storage systems ebb and flow topologies and the control strategies ordinarily utilized in building under various working circumstances and prerequisites, and analyze their disparities and characters, which will helps in picking the PCS structures and control strategies.


Author(s):  
K. N. Pradeep Kumar ◽  
A. Tourlidakis ◽  
P. Pilidis

This paper analyses the operational aspects of a temperature Gas Reactor using direct Helium Cycle for power conversion. As an engineering project, the complexity in the operational aspects of HTGR’s is more severe than that of its design and installation. Its transient stability is achieved in a different manner compared to conventional power plants. An efficient and steady operation is a must for its successful realization. The paper looks into the start-up, shutdown and part load performance of helium power conversion system. The study is based on an ongoing developmental project in South Africa called Pebble Bed Modular Reactor (PBMR).


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1531
Author(s):  
Min-Gi Cho ◽  
Sang-Hoon Lee ◽  
Hyeon-Seok Lee ◽  
Yoon-Geol Choi ◽  
Bongkoo Kang

A new circuit structure and control method for a high power interleaved dual-buck inverter are proposed. The proposed inverter consists of six switches, four diodes and two inductors, uses a dual-buck structure to eliminate zero-cross distortion, and operates in an interleaved mode to reduce the current stress of switch. To reduce the total harmonic distortion at low output power, the inverter is controlled using discontinuous-current-mode control combined with continuous-current-mode control. The experimental inverter had a power-conversion efficiency of 98.5% at output power = 1300 W and 98.3% at output power = 2 kW, when the inverter was operated at an input voltage of 400 VDC, output voltage of 220 VAC/60 Hz, and switching frequency of 20 kHz. The total harmonic distortion was < 0.66%, which demonstrates that the inverter is suitable for high-power dc-ac power conversion.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2150 ◽  
Author(s):  
Phuoc Sang Huynh ◽  
Deepak Ronanki ◽  
Deepa Vincent ◽  
Sheldon S. Williamson

The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles (EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time. In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce the size and cost, as well as to maximize the efficiency of the overall system. Over the past years, significant research studies have been conducted by researchers to improve the performance of power conversion systems including the power converter topologies and control schemes. This paper aims to provide an overview of the existing state-of-the-art of power converter topologies for IPT systems in EV charging applications. In this paper, the widely adopted power conversion topologies for IPT systems are selected and their performance is compared in terms of input power factor, input current distortion, current stress, voltage stress, power losses on the converter, and cost. The single-stage matrix converter based IPT systems advantageously adopt the sinusoidal ripple current (SRC) charging technique to remove the intermediate DC-link capacitors, which improves system efficiency, power density and reduces cost. Finally, technical considerations and future opportunities of power converters in EV wireless charging applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document