Analysis of flux focusing double stator and single rotor axial flux permanent magnet motor

Author(s):  
Qurban Ali Shah Syed ◽  
Ingo Hahn
1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280


2013 ◽  
Vol 49 (5) ◽  
pp. 2189-2192 ◽  
Author(s):  
Dong-Kyun Woo ◽  
Il-Woo Kim ◽  
Dong-Kuk Lim ◽  
Jong-Suk Ro ◽  
Hyun-Kyo Jung

2019 ◽  
Vol 13 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Neethu Salim ◽  
Saurabh Prakash Nikam ◽  
Saumitra Pal ◽  
Ashok Krishnrao Wankhede ◽  
Baylon Godfrey Fernandes

Author(s):  
Ömer Faruk Güney ◽  
Ahmet Çelik ◽  
Ahmet Fevzi Bozkurt ◽  
Kadir Erkan

This paper presents the electromagnetic and mechanical analysis of an axial flux permanent magnet (AFPM) motor for high speed (12000 rpm) rotor which is vertically suspended by magnetic bearings. In the analysis, a prototype AFPM motor with a double-sided rotor and a coreless stator between the rotors are considered. Firstly, electromagnetic analysis of the motor is carried out by using magnetic equivalent circuit method. Then, the rotor disk thickness is determined based on a rotor axial displacement due to the attractive force between the permanent magnets placed on opposite rotor disks. Hereafter, an analytical solution is carried out to determine the natural frequencies of the rotor-shaft system. Finally, 3D finite element analysis (FEA) is carried out to verify the analytical results and some experimental results are given to verify the analytical and numerical results and prove the stable high-speed operation.


Sign in / Sign up

Export Citation Format

Share Document