Meta-heuristic Strategy Planned Controller for Frequency Supervision of Integrated Thermal Plant with Renewable Source

Author(s):  
D Murugesan ◽  
K Jagatheesan ◽  
D Boopathi
2012 ◽  
Vol 38 (11) ◽  
pp. 1751
Author(s):  
Lin-Zi YIN ◽  
Yong-Gang LI ◽  
Chun-Hua YANG ◽  
Wei-Hua GUI

Author(s):  
Aurobindo Behera ◽  
Tapas K. Panigrahi ◽  
Arun K. Sahoo

Background: Power system stability demands minimum variation in frequency, so that loadgeneration balance is maintained throughout the operation period. An Automatic Generation Control (AGC) monitors the frequency and varies the generation to maintain the balance. A system with multiple energy sources and use of a fractional controller for efficient control of stability is presented in the paper. At the outset a 2-area thermal system with governor dead band, generation rate constraint and boiler dynamics have been applied. Methods: A variation of load is deliberated for the study of the considered system with Harmony Search (HS) algorithm, applied for providing optimization of controller parameters. Integral Square Time Square Error (ISTSE) is chosen as objective function for handling the process of tuning controller parameters. : A study of similar system with various lately available techniques such as TLBO, hFA-PS and BFOA applied to PID, IDD and PIDD being compared to HS tuned fractional controller is presented under step and dynamic load change. The effort extended to a single area system with reheat thermal plant, hydel plant and a unit of wind plant is tested with the fractional controller scheme. Results: The simulation results provide a clear idea of the superiority of the combination of HS algorithm and FO-PID controller, under dynamically changing load. The variation of load is taken from 1% to 5% of the connected load. Conclusion: Finally, system robustness is shown by modifying essential factors by ± 30%.


2019 ◽  
Vol 1387 ◽  
pp. 012147
Author(s):  
F M Adiandri ◽  
G A Kristanto
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 173
Author(s):  
Elena Domínguez ◽  
Pablo G. del Río ◽  
Aloia Romaní ◽  
Gil Garrote ◽  
Lucília Domingues

In order to exploit a fast-growing Paulownia hardwood as an energy crop, a xylose-enriched hydrolysate was obtained in this work to increase the ethanol concentration using the hemicellulosic fraction, besides the already widely studied cellulosic fraction. For that, Paulownia elongata x fortunei was submitted to autohydrolysis treatment (210 °C or S0 of 4.08) for the xylan solubilization, mainly as xylooligosaccharides. Afterwards, sequential stages of acid hydrolysis, concentration, and detoxification were evaluated to obtain fermentable sugars. Thus, detoxified and non-detoxified hydrolysates (diluted or not) were fermented for ethanol production using a natural xylose-consuming yeast, Scheffersomyces stipitis CECT 1922, and an industrial Saccharomyces cerevisiae MEC1133 strain, metabolic engineered strain with the xylose reductase/xylitol dehydrogenase pathway. Results from fermentation assays showed that the engineered S. cerevisiae strain produced up to 14.2 g/L of ethanol (corresponding to 0.33 g/g of ethanol yield) using the non-detoxified hydrolysate. Nevertheless, the yeast S. stipitis reached similar values of ethanol, but only in the detoxified hydrolysate. Hence, the fermentation data prove the suitability and robustness of the engineered strain to ferment non-detoxified liquor, and the appropriateness of detoxification of liquor for the use of less robust yeast. In addition, the success of hemicellulose-to-ethanol production obtained in this work shows the Paulownia biomass as a suitable renewable source for ethanol production following a suitable fractionation process within a biorefinery approach.


2021 ◽  
Vol 11 (7) ◽  
pp. 3058
Author(s):  
Elizaveta Liivik ◽  
Yongheng Yang ◽  
Ariya Sangwongwanich ◽  
Frede Blaabjerg

If we look at the history of renewable energy sources (RESs), how it all began, and how rapidly they continue to develop, it can be argued that one of the main reasons is due to the rapid improvements in power electronics technology in interfacing the renewable source to the grid [...]


2020 ◽  
Vol 12 (13) ◽  
pp. 5486
Author(s):  
Siniša Škrbić ◽  
Aleksandar Ašonja ◽  
Radivoj Prodanović ◽  
Vladica Ristić ◽  
Goran Stevanović ◽  
...  

This research analyzed the degree of utilization of the agricultural biomass for energy purposes (combustion), in order to indicate the reasons that limit its use. The biomass potential was studied by means of the methodology of the biomass potential, whereas the factors suggesting a low degree of biomass utilization were identified by means of factor analysis. The research results reveal that there is an enormous potential of the unused agricultural biomass. This dissertation research significantly contributes to the establishment of a genuine mathematical model based on multiple linear regression. The solution obtained by this analysis, in both a mathematical and a scientific manner, conveys the primary reasons for an insufficient utilization of the biomass for energy purposes. Moreover, the paper suggests the measures to be applied for a more substantial use of this renewable source of energy and presents the expected benefits to be gained.


Author(s):  
Anam Fatima ◽  
Muhammad Zafar ◽  
Mushtaq Ahmad ◽  
Shazia Sultana ◽  
Muhammad Ishtiaq Ali

Sign in / Sign up

Export Citation Format

Share Document