Temperature dependence of SMOS/MIRAS, GCOM-W1/AMSR2 brightness temperature and ALOS/PALSAR radar backscattering at arctic test sites

Author(s):  
K. V. Muzalevskiy ◽  
Z. Ruzicka ◽  
L. G. Kosolapova ◽  
V. L. Mironov
2021 ◽  
pp. 24-29
Author(s):  
Sergei Kireev ◽  
Sergei Gavrish ◽  
Anna Kulebyakina ◽  
Sergei Shashkovskiy

The study results of the peak and average electrical volumetric power density influence on the radiation efficiency and brightness temperature in the 200–300 nm bactericidal spectrum range are presented. A linear dependence of the radiation efficiency change in the 5.1–8.4 % range was obtained with the average volumetric power density increase from 177 to 390 kW/cm3. The brightness temperature dependence in the specified spectral region on the peak volumetric power density is a logarithmic character with decreasing growth rate when approaching 9 kK. This effect can be associated with both radiation blocking by vaporized quartz fumes and with UV light shielding by outer plasma layers


Author(s):  
Kenneth H. Downing ◽  
Robert M. Glaeser

The structural damage of molecules irradiated by electrons is generally considered to occur in two steps. The direct result of inelastic scattering events is the disruption of covalent bonds. Following changes in bond structure, movement of the constituent atoms produces permanent distortions of the molecules. Since at least the second step should show a strong temperature dependence, it was to be expected that cooling a specimen should extend its lifetime in the electron beam. This result has been found in a large number of experiments, but the degree to which cooling the specimen enhances its resistance to radiation damage has been found to vary widely with specimen types.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


2002 ◽  
Vol 12 (3) ◽  
pp. 71-74
Author(s):  
J. A. Jiménez Tejada ◽  
A. Godoy ◽  
A. Palma ◽  
P. Cartujo

1964 ◽  
Vol 25 (5) ◽  
pp. 634-641 ◽  
Author(s):  
Sz. Kraśnicki ◽  
A. Wanic ◽  
Ž. Dimitrijević ◽  
R. Maglić ◽  
V. Marković ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document