Modeling and control of a Doubly Fed Induction Generator using a back-to-back converters in grid tied wind power system

Author(s):  
Milkias Berhanu Tuka ◽  
Roberto Leidhold ◽  
Mengesha Mamo
2019 ◽  
Vol 88 ◽  
pp. 258-267 ◽  
Author(s):  
C.M. Rocha-Osorio ◽  
J.S. Solís-Chaves ◽  
Lucas L. Rodrigues ◽  
J.L. Azcue Puma ◽  
A.J. Sguarezi Filho

Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 904 ◽  
Author(s):  
Tiejiang Yuan ◽  
Jinjun Wang ◽  
Yuhang Guan ◽  
Zheng Liu ◽  
Xinfu Song ◽  
...  

Author(s):  
Manale Bouderbala ◽  
Badre Bossoufi ◽  
Ahmed Lagrioui ◽  
Mohammed Taoussi ◽  
Hala Alami Aroussi ◽  
...  

<p>In the recent years, the development and the exploitation of renewable energy knew a great evolution. Among these energy resources, the wind power represents an important potential for that the wind system has been the subject of several researches. The purpose of this study is to improve the power extracted from wind energy, taking into consideration the variation of wind speed which causes a problem in energy production. For this purpose, we have controlled the powers whether it is active or reactive delivered by the generator. This paper, presents essentially the modeling and control of doubly- fed induction generator (DFIG), which is connected to a variable speed wind turbine. Firstly, the model of the wind power system with the maximum power point tracking (MPPT) strategy is shown. Then, the modeling of doubly- fed induction generator (DFIG) and its power control is presented. Finnaly, to ensure the attitude of these controls the simulations is presented in the Matlab/Simulink environment.</p>


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7685
Author(s):  
Xiangwu Yan ◽  
Wenfei Chang ◽  
Sen Cui ◽  
Aazim Rassol ◽  
Jiaoxin Jia ◽  
...  

A large-scale power system breakdown in the United Kingdom caused blackouts in several important cities, losing about 3.2 percent of the load and affecting nearly 1 million power users on 9 August 2019. On the basis of the accident investigation report provided by the UK National Grid, the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The Hornsea wind power system model was established by MATLAB simulation software to reproduce the accident. To solve this problem, based on the positive and negative sequence decomposition, the control strategy of grid-side converter of doubly-fed induction generator is improved to control the positive sequence voltage of the generator terminal, which can quickly recover the voltage by compensating the reactive power at the grid side. Consequently, the influence of the fault is weakened on the Hornsea wind farm system, and the sub-synchronous oscillation of the system is suppressed. The simulation results verify the effectiveness of the proposed control strategy in suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to doubly-fed induction generator, which serves as a reference for studying similar problems of offshore wind power.


Sign in / Sign up

Export Citation Format

Share Document