scholarly journals In Situ Transmission Electron Microscopy: A Powerful Tool for the Characterization of Carrier-Selective Contacts

Author(s):  
Haider Ali ◽  
Supriya Koul ◽  
Geoffrey Gregory ◽  
James Bullock ◽  
Ali Javey ◽  
...  
2017 ◽  
Vol 23 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Sibylle Schilling ◽  
Arne Janssen ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractThe capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.


Author(s):  
Lars I. van der Wal ◽  
Savannah J Turner ◽  
Jovana Zecevic

The characterization of heterogeneous catalysts is critical to their development and to understand their performance by correlating their physicochemical properties to their activity, selectivity and stability. Transmission electron microscopy (TEM)...


2005 ◽  
Vol 20 (7) ◽  
pp. 1695-1707 ◽  
Author(s):  
Renu Sharma

The world of nanomaterials has become the real world for most applications in the area of nanotechnology. As postsynthesis handling of materials at the nanoscale level is impractical, nanomaterials must be synthesized directly as part of a device or circuit. The demands of nanotechnology have led to modifications in the design of transmission electron microscopes (TEMs) that enable in situ synthesis and characterization simultaneously. The environmental TEM (ETEM) is one such modified instrument that has often been used to follow gas–solid and/or liquid–solid interactions at elevated temperatures. Although the history and development of the ETEM, also called the controlled atmosphere or environmental cell TEM, is as old as transmission electron microscopy itself, developments in the design of medium-voltage TEMs have succeeded in bringing resolutions down to the subnanometer level. A modern ETEM equipped with a field-emission gun, energy filter or electron energy-loss spectrometer, scanning transmission electron microscopy coils, and bright-field and dark-field detectors can be a versatile tool for understanding chemical processes at the nanometer level. This article reviews the design and operations of a dedicated ETEM. Its applications range from the in situ characterization of reaction steps, such as oxidation-reduction and hydroxylation, to the in situ synthesis of nanomaterials, such as quantum dots and carbon nanotubes. Some examples of the current and the future applications for the synthesis and characterization of nanomaterials are also discussed.


2017 ◽  
Vol 110 (21) ◽  
pp. 213903 ◽  
Author(s):  
Arijita Mukherjee ◽  
Hasti Asayesh Ardakani ◽  
Tanghong Yi ◽  
Jordi Cabana ◽  
Reza Shahbazian-Yassar ◽  
...  

1998 ◽  
Vol 4 (3) ◽  
pp. 248-253 ◽  
Author(s):  
M. Yeadon ◽  
J.C. Yang ◽  
R.S. Averback ◽  
J.M. Gibson

We discuss various techniques for the characterization of supported nanoparticles by in situ plan-view transmission electron microscopy. In particular, we discuss here mechanisms of image contrast formation by particles undergoing reorientation on the surface of a single crystal substrate. We consider reorientation by a variety of mechanisms including rotation, sintering and grain growth, and surface diffusion. Experimental observations are presented and the data compared with theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document