CCAWSN: A cognitive communication architecture for wireless sensor networks

Author(s):  
Gayathri Vijay ◽  
Mohamed Ibnkahla
2002 ◽  
Author(s):  
Chenyang Lu ◽  
Brian M. Blum ◽  
Tarek F. Abdelzaher ◽  
John A. Stankovic ◽  
Tian He

2012 ◽  
Vol 546-547 ◽  
pp. 1107-1112 ◽  
Author(s):  
Wei Min Lang ◽  
Yuan Cheng Zhu ◽  
Hu Sheng Li

Wireless sensor networks have been extensively deployed in the electric power systems for sensing, transmission and control, which provide more opportunities for wireless low power radios to operate. As the next generation electricity system, the smart grid should possess the capability to transmit reliable and real-time information to the control centers of the utilities. In order to solve the issues such as heterogeneous coexistence, spectrum scarcity, tremendous data processing and Security guarantees, revolutionary communication architecture is urgently demanded. In this paper, after analyzing the hierarchical structure of smart grid and illustrating the principle of WCSN in smart grids, we propose the security architecture of wireless sensor networks based on cognitive radio for smart grids, which can be used as a reference to design and develop the Wireless Cognitive Sensor Network (WCSN) security schemes in the electric power systems.


Author(s):  
Mostefa Bendjima ◽  
Mohammed Feham

Wireless Sensor Networks (WSN) is designed to collect information across a large number of limited battery sensor nodes. Therefore, it is important to minimize the energy consumption of each node, which leads to the extension of the network life. Our goal is to design an intelligent WSN that collects as much information as possible to process it intelligently. To achieve this goal, an agent has been migrated to each node in order to process the information and to cooperate with these neighboring nodes while Mobile Agents (MA) can be used to reduce information between nodes and send those to the base station (Sink). This work proposes to use communication architecture for wireless sensor networks based on the Multi Agent System (MAS) to ensure optimal information collection. The collaboration of these agents generates a simple message that summarizes the important information in order to transmit it by a mobile agent. To reduce the size of the MA, the nodes of the network have been grouped into sector. As for each MA, we have established an optimal itinerary, consuming a minimum amount of energy with the data aggregation efficiency in a minimum time. Successive simulations in large scale wireless sensor networks through the SINALGO simulator show the performance of our proposal, in terms of energy consumption and package delivery rate.


2018 ◽  
Vol 10 (9) ◽  
pp. 91 ◽  
Author(s):  
Mostefa Bendjima ◽  
Mohammed Feham

Wireless sensor networks (WSN) are designed to collect information by means of a large number of energy-limited battery sensor nodes. Therefore, it is important to minimize the energy consumed by each sensor, in order to extend the network life. The goal of this work is to design an intelligent WSN that collects as much information as possible to process it intelligently. To achieve this goal, an agent is sent to each sensor in order to process the information and to cooperate with neighboring sensors while mobile agents (MA) can be used to reduce information shared between source nodes (SN) and send them to the base station (Sink). This work proposes to use communication architecture for wireless sensor networks based on the multi-agent system (MAS) to ensure optimal information collection. The collaboration of these agents generates a simple message that summarizes the important information in order to transmit it by a mobile agent. To reduce the size of the MA, the sensors of the network have been grouped into sectors. For each MA, we have established an optimal itinerary, consuming a minimum amount of energy with data aggregation efficiency in a minimum time. Successive simulations in large-scale wireless sensor networks through the SINALGO (published under a BSD license) simulator show the performance of the proposed method, in terms of energy consumption and package delivery rate.


Sign in / Sign up

Export Citation Format

Share Document