Dynamically Reconfigurable Monitoring in Large Scale Real-Time Embedded Systems

Author(s):  
S. Ahuja ◽  
Di Yao ◽  
S. Neema ◽  
T. Bapty ◽  
S. Shetty ◽  
...  
Author(s):  
Teng Long ◽  
Zhu Yang ◽  
Bingyi Li ◽  
Liang Chen ◽  
Zegang Ding ◽  
...  

With the development of satellite load technology and very-large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. Limited by severe size, weight, and power consumption constraints, a key challenge of on-board SAR imaging system design is to achieve high real-time processing performance. In addition, with the rise of multi-mode SAR applications, the reconfiguration of the on-board processing system is beginning to receive widespread attention. This paper presents a multi-mode SAR imaging chip with SoC architecture based on the reconfigurable double-operation engines and multilayer switching network. We decompose the commonly used extend chirp scaling (CS) SAR imaging algorithm into 8 types of double-operation engines according to the computing orders, and design a three-level switching network to connect these engines for data transition. The CPU is responsible for engine scheduling based on data flow driven with instructions to implement each part of the CS algorithm. Thus, multi-mode floating-point SAR imaging processing can be integrated into a single Application-Specific Integrated Circuit (ASIC) chip instead of relying on distributed technologies. As a proof of concept, a prototype measurement system with chip-included board is implemented, and the performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. A chip requires 9.2 s, 50.6 s and 7.4 s for a stripmap with 16,384×16,384 granularity, multi-channel stripmap with 65.536×8192 granularity and multi-channel scan mode with 32,768×4096 granularity and 6.9 W for the system hardware to process the SAR raw data.


VLSI Design ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Zhang Weigong ◽  
Li Chao ◽  
Qiu Keni ◽  
Zhang Shaonan ◽  
Chen Xianglong

UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.


Sign in / Sign up

Export Citation Format

Share Document