Mathematical Modeling of the Heat-Mass-Exchange in Anisotropic Environments Taking into Account the Boundary of Phase Transition

Author(s):  
Yaroslav Sokolovskyy ◽  
Iryna Boretska ◽  
Bogdana Gayvas ◽  
Igor Kroshnyy
Author(s):  
Evgeniy Podoplelov ◽  
Aleksey Bal'chugov ◽  
Anatoliy Dement'ev ◽  
Anatoliy Glotov

. The interaction of gas and liquid phases in some cases is accompanied by the spontaneous occur-rence of convective flows and turbulent pulsations at the phase boundary and in adjacent areas. Hy-drodynamic instability allows to accelerate the interfacial transfer of matter and leads to an increase in mass transfer coefficients. Research in this field is not only theoretical, but also practical, since sur-face convection can be artificially created in apparatus for intensifying the mass exchange process.


Author(s):  
Irina G. Nizovtseva ◽  
Ilya O. Starodumov ◽  
Eugeny V. Pavlyuk ◽  
Alexander A. Ivanov

Water ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 123 ◽  
Author(s):  
Anna Suzuki ◽  
Sergei Fomin ◽  
Vladimir Chugunov ◽  
Toshiyuki Hashida

2021 ◽  
Vol 8 (4) ◽  
pp. 830-841
Author(s):  
Ya. I. Sokolovskyy ◽  
◽  
I. B. Boretska ◽  
B. I. Gayvas ◽  
I. M. Kroshnyy ◽  
...  

The article deals with constructing and implementing mathematical models of non-isothermal moisture transfer during drying of anisotropic capillary-porous materials, in particular wood, taking into account the movement of the evaporation zone for non-steady drying schedules, as well as to the development of effective analytical and numerical methods for their implementation. An analytical-numerical method for the determination of non-isothermal moisture transfer under non-steady schedules of the drying process has been developed, taking into account the dynamics of the phase transition boundary change. Calculation relationships are established for determining the phase transition temperature taking into account transport gradients and time for which the relative saturation reaches the boundaries of the phase transition.


2014 ◽  
Vol 19 (7) ◽  
pp. 1889-1909 ◽  
Author(s):  
Alessia Berti ◽  
◽  
Claudio Giorgi ◽  
Angelo Morro ◽  
◽  
...  

Author(s):  
Liubov Toropova ◽  
Danil Aseev ◽  
Sergei Osipov ◽  
Alexander Ivanov

This paper is devoted to the mathematical modeling of a combined effect of directional and bulk crystallization in a phase transition layer with allowance for nucleation and evolution of newly born particles. We consider two models with and without fluctuations in crystal growth velocities, which are analytically solved using the saddle-point technique. The particle-size distribution function, solid-phase fraction in a supercooled two-phase layer, its thickness and permeability, solidification velocity, and desupercooling kinetics are defined. This solution enables us to characterize the mushy layer composition. We show that the region adjacent to the liquid phase is almost free of crystals and has a constant temperature gradient. Crystals undergo intense growth leading to fast mushy layer desupercooling in the middle of a two-phase region. The mushy region adjacent to the solid material is filled with the growing solid phase structures and is almost desupercooled.


Sign in / Sign up

Export Citation Format

Share Document