A thermoelectric air-liquid cooling system for electronic devices: Model, performance and analysis

Author(s):  
Dazhi Wang ◽  
Doug Crane
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bui Hung Thang ◽  
Pham Van Trinh ◽  
Nguyen Van Chuc ◽  
Phan Hong Khoi ◽  
Phan Ngoc Minh

Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m·Kcompared with thermal conductivity of Ag 419 W/m·K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU’s temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU’s temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for theμ-processor and other high power electronic devices.


Author(s):  
Muhammad Arif Harun ◽  
Nor Azwadi Che Sidik

Electronic devices are becoming more efficient while getting a smaller size and compact design thus increase heat generation significantly. High heat generation from high technology electronic devices are needed to be cool down or control its temperature to prevent overheating problems. Due to the high cooling performance of liquid cooling, the electronic cooling system is shifting from an air-cooling system to a liquid cooling system. In the past few decades, numerous methods proposed by researchers for the central process unit (CPU) cooling using the liquid system either active cooling or passive cooling system. Other than physical configuration such as heat sink design, different configurations of working fluids are widely been studied by most of the researchers. Different working fluids have different heat transfer performance. Furthermore, a recent study has come out more interesting finding using nanofluid which can enhance heat transfer performance of liquid cooling. Nanofluid is a working fluid that has nanoparticles disperse in the base fluid which can increase the thermal properties of the based fluid. In this paper, comprehensive literature on the type of working fluid used in the respective system and methods of liquid cooling system for CPU including its cooling performance. Furthermore, this review paper discussed the different configuration of the liquid block and also the working fluid that had been used in the CPU cooling system.


Author(s):  
Vahideh Radmard ◽  
Yaser Hadad ◽  
Srikanth Rangarajan ◽  
Cong H. Hoang ◽  
Najmeh Fallahtafti ◽  
...  

Author(s):  
Yi. Feng ◽  
Y. Wang ◽  
C. Y. Huang

The increasing power consumption of microelectronic systems and the dense layout of semiconductor components leave very limited design spaces with tight constraints for the thermal solution. Conventional thermal management approaches, such as extrusion, fold-fin, and heat pipe heat sinks, are somehow reaching their performance limits, due to the geometry constraints. Currently, more studies have been carried out on the liquid cooling technologies, as the flexible tubing connection of liquid cooling system makes both the accommodation in constrained design space and the simultaneous cooling of multi heating sources feasible. To significantly improve the thermal performance of a liquid cooling system, heat exchangers with more liquid-side heat transfer area with acceptable flow pressure drop are expected. This paper focuses on the performance of seven designs of source heat exchanger (cold plate). The presented cold plates are all made in pure copper material using wire cutting, soldering, brazing, or sintering process. Enhanced heat transfer surfaces such as micro channel and cooper mesh are investigated. Detailed experiments have been conducted to understand the performance of these seven cooper cold plates. The same radiators, fan, and water pump were connected with each cooper cold plate to investigate the overall thermal performance of liquid cooling system. Water temperature readings at the inlets and outlets of radiators, pump, and colder plate have been taken to interpret the thermal resistance distribution along the cooling loop.


2020 ◽  
Vol 318 ◽  
pp. 01004
Author(s):  
Miroslav Blatnický ◽  
Ján Dižo

In this article, authors focus on the design and construction of a real prototype of an engine mechanism with rotating cylinders and its using mainly in piston combustion engines. It is assumed, that the normal force of a piston will be completely eliminated, because the swing angle of a connecting rod will equal to zero during the whole working cycle, since the connecting arm of the piston moves just the cylinder axis. It will by allowed by the conceptual design of the mechanism presented in this article. As rotating blocks of cylinders concurrently act as a flywheel, it is proposed, that in this way there is possible to save the mass of additional flywheels. Moreover, liquid cooling system is not necessary, because the rotating cylinders sufficiently transfer heat to ambient air. In addition, the output of torque will be reached without necessity of gear transmission, which results to decreasing of needs of mechanism lubrication. Other advance of the designed mechanism are two outputs. The first output is low-speed and it goes out from rotating cylinders, i. e. from the slider-crank mechanism with revolutions n1. The other output is high-speed, from the crankshaft with revolutions n2. Because of more favourable properties of the mechanism, authors have decided to create a real device to confirm all mentioned advantages of the mechanism by the suitable way.


2019 ◽  
Vol 126 ◽  
pp. 00031 ◽  
Author(s):  
lnur N. Madyshev ◽  
Aliya I. Khafizova ◽  
Oksana S. Dmitrieva

This paper deals with the studies of cooling tower, operated with the contactless evaporative cooling technology. The authors developed the cooling tower with a three-flow liquid cooling system. The authors conducted the numerical studies of gas-liquid flow dynamics in the inclined-corrugated elements of checker filling unit that allows to give us an idea of two-phase flow structure, its movement throughout the checker filling, as well as to assess the influence of mode parameters on the efficiency of collecting the liquid drops and the range of stable operation of device. The most effective operation of this device is at the pressure drop of 100 Pa, while developing the average air flow rate in the element up to 3.2 m/s.


2017 ◽  
Vol 110 ◽  
pp. 01044
Author(s):  
Sergey V. Koynov ◽  
Egor A. Tarasov

Sign in / Sign up

Export Citation Format

Share Document