Characteristic Mode Analysis of Mutual Coupling

Author(s):  
Sandip Ghosal ◽  
Rakesh Sinha ◽  
Arijit De ◽  
Ajay Chakrabarty
2019 ◽  
Vol 14 (2) ◽  
pp. 215-226 ◽  
Author(s):  
Erik Fritz‐Andrade ◽  
Angel Perez‐Miguel ◽  
Ricardo Gomez‐Villanueva ◽  
Hildeberto Jardon‐Aguilar

2021 ◽  
Vol 11 (4) ◽  
pp. 1542
Author(s):  
Adamu Halilu Jabire ◽  
Adnan Ghaffar ◽  
Xue Jun Li ◽  
Anas Abdu ◽  
Sani Saminu ◽  
...  

In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6–12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2516
Author(s):  
Bashar Bahaa Qas Elias ◽  
Ping Jack Soh ◽  
Azremi Abdullah Al-Hadi ◽  
Prayoot Akkaraekthalin ◽  
Guy A. E. Vandenbosch

This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave “trial and error” simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.


Sign in / Sign up

Export Citation Format

Share Document