RoIP Compression Method in Burst Noise Upstream Environment for CATV Network

Author(s):  
Chengyu Cui ◽  
Sungkwon Park
2009 ◽  
Vol E92-C (3) ◽  
pp. 352-355
Author(s):  
Ki-Sang JUNG ◽  
Kang-Jik KIM ◽  
Young-Eun KIM ◽  
Jin-Gyun CHUNG ◽  
Ki-Hyun PYUN ◽  
...  

Author(s):  
Adnan Alam Khan ◽  
Dr. Asadullah Shah ◽  
Saghir Muhammad

Telemedicine is one of the most emerging technologies of applied medical sciences. Medical information related to patients is transmitted and stored for references and consultations. Medical images occupy huge space; in order to transmit these images may delay the process of image transmission in critical times. Image compression techniques provide a better solution to combat bandwidth scarcity problems, and transmit same image in a much lower bandwidth requirements, more faster and at the same time maintain quality. In this paper a differential image compression method is developed in which medical images are taken from a wounded patient and are compressed to reduce the bit rate of these images. Results indicate that on average 25% compression on images is achieved with 3.5 MOS taken from medical doctors and other paramedical staff the ultimately user of the images.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1817
Author(s):  
Jiawen Xue ◽  
Li Yin ◽  
Zehua Lan ◽  
Mingzhu Long ◽  
Guolin Li ◽  
...  

This paper proposes a novel 3D discrete cosine transform (DCT) based image compression method for medical endoscopic applications. Due to the high correlation among color components of wireless capsule endoscopy (WCE) images, the original 2D Bayer data pattern is reconstructed into a new 3D data pattern, and 3D DCT is adopted to compress the 3D data for high compression ratio and high quality. For the low computational complexity of 3D-DCT, an optimized 4-point DCT butterfly structure without multiplication operation is proposed. Due to the unique characteristics of the 3D data pattern, the quantization and zigzag scan are ameliorated. To further improve the visual quality of decompressed images, a frequency-domain filter is proposed to eliminate the blocking artifacts adaptively. Experiments show that our method attains an average compression ratio (CR) of 22.94:1 with the peak signal to noise ratio (PSNR) of 40.73 dB, which outperforms state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document