Appliance-Level Anomaly Detection in Nonintrusive Load Monitoring via Power Consumption-Based Feature Analysis

2021 ◽  
Vol 67 (4) ◽  
pp. 363-371
Author(s):  
Elnaz Azizi ◽  
Mohammad T. H. Beheshti ◽  
Sadegh Bolouki
2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Jihyun Kim ◽  
Thi-Thu-Huong Le ◽  
Howon Kim

Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM’s issues and improve the performance of load identification.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2195
Author(s):  
Hasan Rafiq ◽  
Xiaohan Shi ◽  
Hengxu Zhang ◽  
Huimin Li ◽  
Manesh Kumar Ochani

Non-intrusive load monitoring (NILM) is a process of estimating operational states and power consumption of individual appliances, which if implemented in real-time, can provide actionable feedback in terms of energy usage and personalized recommendations to consumers. Intelligent disaggregation algorithms such as deep neural networks can fulfill this objective if they possess high estimation accuracy and lowest generalization error. In order to achieve these two goals, this paper presents a disaggregation algorithm based on a deep recurrent neural network using multi-feature input space and post-processing. First, the mutual information method was used to select electrical parameters that had the most influence on the power consumption of each target appliance. Second, selected steady-state parameters based multi-feature input space (MFS) was used to train the 4-layered bidirectional long short-term memory (LSTM) model for each target appliance. Finally, a post-processing technique was used at the disaggregation stage to eliminate irrelevant predicted sequences, enhancing the classification and estimation accuracy of the algorithm. A comprehensive evaluation was conducted on 1-Hz sampled UKDALE and ECO datasets in a noised scenario with seen and unseen test cases. Performance evaluation showed that the MFS-LSTM algorithm is computationally efficient, scalable, and possesses better estimation accuracy in a noised scenario, and generalized to unseen loads as compared to benchmark algorithms. Presented results proved that the proposed algorithm fulfills practical application requirements and can be deployed in real-time.


2021 ◽  
Vol 152 ◽  
pp. 107015
Author(s):  
Chuqiao Xu ◽  
Junliang Wang ◽  
Jie Zhang ◽  
Xiaoou Li

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1048 ◽  
Author(s):  
Mohamed Aymane Ahajjam ◽  
Daniel Bonilla Licea ◽  
Mounir Ghogho ◽  
Abdellatif Kobbane

Non-intrusive Load Monitoring (NILM) systems aim at identifying and monitoring the power consumption of individual appliances using the aggregate electricity consumption. Many issues hinder their development. For example, due to the complexity of data acquisition and labeling, datasets are scarce; labeled datasets are essential for developing disaggregation and load prediction algorithms. In this paper, we introduce a new NILM system, called Integrated Monitoring and Processing Electricity Consumption (IMPEC). The main characteristics of the proposed system are flexibility, compactness, modularity, and advanced on-board processing capabilities. Both hardware and software parts of the system are described, along with several validation tests performed at residential and industrial settings.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5236 ◽  
Author(s):  
Sanket Desai ◽  
Rabei Alhadad ◽  
Abdun Mahmood ◽  
Naveen Chilamkurti ◽  
Seungmin Rho

With the large-scale deployment of smart meters worldwide, research in non-intrusive load monitoring (NILM) has seen a significant rise due to its dual use of real-time monitoring of end-user appliances and user-centric feedback of power consumption usage. NILM is a technique for estimating the state and the power consumption of an individual appliance in a consumer’s premise using a single point of measurement device such as a smart meter. Although there are several existing NILM techniques, there is no meaningful and accurate metric to evaluate these NILM techniques for multi-state devices such as the fridge, heat pump, etc. In this paper, we demonstrate the inadequacy of the existing metrics and propose a new metric that combines both event classification and energy estimation of an operational state to give a more realistic and accurate evaluation of the performance of the existing NILM techniques. In particular, we use unsupervised clustering techniques to identify the operational states of the device from a labeled dataset to compute a penalty threshold for predictions that are too far away from the ground truth. Our work includes experimental evaluation of the state-of-the-art NILM techniques on widely used datasets of power consumption data measured in a real-world environment.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2148 ◽  
Author(s):  
Pascal A. Schirmer ◽  
Iosif Mporas ◽  
Akbar Sheikh-Akbari

A data-driven methodology to improve the energy disaggregation accuracy during Non-Intrusive Load Monitoring is proposed. In detail, the method uses a two-stage classification scheme, with the first stage consisting of classification models processing the aggregated signal in parallel and each of them producing a binary device detection score, and the second stage consisting of fusion regression models for estimating the power consumption for each of the electrical appliances. The accuracy of the proposed approach was tested on three datasets—ECO (Electricity Consumption & Occupancy), REDD (Reference Energy Disaggregation Data Set), and iAWE (Indian Dataset for Ambient Water and Energy)—which are available online, using four different classifiers. The presented approach improves the estimation accuracy by up to 4.1% with respect to a basic energy disaggregation architecture, while the improvement on device level was up to 10.1%. Analysis on device level showed significant improvement of power consumption estimation accuracy especially for continuous and nonlinear appliances across all evaluated datasets.


Sign in / Sign up

Export Citation Format

Share Document