Spectral analysis of time-domain phase jitter measurements

Author(s):  
Un-Ku Moon ◽  
K. Mayaram ◽  
J.T. Stonick
Radio Science ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 593-603 ◽  
Author(s):  
Timor Melamed ◽  
Ehud Heyman

Author(s):  
X. M. Wang ◽  
C. G. Koh ◽  
T. N. Thanh ◽  
J. Zhang

For the purpose of structural health monitoring (SHM), it is beneficial to develop a robust and accurate numerical strategy so as to identify key parameters of offshore structures. In this regard, it is difficult to use time-domain methods as the time history of wave load is not available unless output-only methods can be developed. Alternatively, spectral analysis widely used in offshore engineering to predict structural responses due to random wave conditions can be used. Thus the power spectral density (PSD) of structural response may be more appropriate than time history of structural responses in defining the objective (fitness) function for system identification of offshore structures. By minimizing PSD differences between measurements and simulations, the proposed numerical strategy is completely carried out in frequency domain, which can avoid inherent problems rising from random phase angles and unknown initial conditions in time domain. A jack-up platform is studied in the numerical study. A search space reduction method (SSRM) incorporating the use of genetic algorithms (GA) as well as a substructure approach are adopted to improve the accuracy and efficiency of identification. As a result, the stiffness parameters of jack-up legs can be well identified even under fairly noisy conditions.


2020 ◽  
Author(s):  
Jan Ravnik ◽  
Michele Diego ◽  
Yaroslav Gerasimenko ◽  
Yevhenii Vaskivskyi ◽  
Igor Vaskivskyi ◽  
...  

Abstract Metastable self-organized electronic states in quantum materials are of fundamental importance, displaying emergent dynamical properties that may be used in new generations of sensors and memory devices. Such states are typically formed through phase transitions under non-equilibrium conditions and the final state is reached through processes that span a large range of timescales. By using time-resolved optical techniques and femtosecond-pulse-excited scanning tunneling microscopy (STM), the evolution of the metastable states in the quasi-two-dimensional dichalcogenide 1T-TaS2 is mapped out on a temporal phase diagram using the photon density and temperature as control parameters on timescales ranging from 10-12 to 103 s. The introduction of a time-domain axis in the phase diagram enables us to follow the evolution of metastable emergent states created by different phase transition mechanisms on different timescales, thus enabling comparison with theoretical predictions of the phase diagram and opening the way to understanding of the complex ordering processes in metastable materials.


2020 ◽  
Vol 177 ◽  
pp. 104037
Author(s):  
Sara Johansson ◽  
Per Hedblom ◽  
Torleif Dahlin

Sign in / Sign up

Export Citation Format

Share Document