Electroencephalographic based hearing identification using back-propagation algorithm

Author(s):  
R. Sudirman ◽  
S. C. Seow
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2704
Author(s):  
Yunhan Lin ◽  
Wenlong Ji ◽  
Haowei He ◽  
Yaojie Chen

In this paper, an intelligent water shooting robot system for situations of carrier shake and target movement is designed, which uses a 2 DOF (degree of freedom) robot as an actuator, a photoelectric camera to detect and track the desired target, and a gyroscope to keep the robot’s body stable when it is mounted on the motion carriers. Particularly, for the accurate shooting of the designed system, an online tuning model of the water jet landing point based on the back-propagation algorithm was proposed. The model has two stages. In the first stage, the polyfit function of Matlab is used to fit a model that satisfies the law of jet motion in ideal conditions without interference. In the second stage, the model uses the back-propagation algorithm to update the parameters online according to the visual feedback of the landing point position. The model established by this method can dynamically eliminate the interference of external factors and realize precise on-target shooting. The simulation results show that the model can dynamically adjust the parameters according to the state relationship between the landing point and the desired target, which keeps the predicted pitch angle error within 0.1°. In the test on the actual platform, when the landing point is 0.5 m away from the position of the desired target, the model only needs 0.3 s to adjust the water jet to hit the target. Compared to the state-of-the-art method, GA-BP (genetic algorithm-back-propagation), the proposed method’s predicted pitch angle error is within 0.1 degree with 1/4 model parameters, while costing 1/7 forward propagation time and 1/200 back-propagation calculation time.


2021 ◽  
pp. 321-326
Author(s):  
Sivaprakash J. ◽  
Manu K. S.

In the advanced global economy, crude oil is a commodity that plays a major role in every economy. As Crude oil is highly traded commodity it is essential for the investors, analysts, economists to forecast the future spot price of the crude oil appropriately. In the last year the crude oil faced a historic fall during the pandemic and reached all time low, but will this situation last? There was analysis such as fundamental analysis, technical analysis and time series analyses which were carried out for predicting the movement of the oil prices but the accuracy in such prediction is still a question. Thus, it is necessary to identify better methods to forecast the crude oil prices. This study is an empirical study to forecast crude oil prices using the neural networks. This study consists of 13 input variables with one target variable. The data are divided in the ratio 70:30. The 70% data is used for training the network and 30% is used for testing. The feed forward and back propagation algorithm are used to predict the crude oil price. The neural network proved to be efficient in forecasting in the modern era. A simple neural network performs better than the time series models. The study found that back propagation algorithm performs better while predicting the crude oil price. Hence, ANN can be used by the investors, forecasters and for future researchers.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

Sign in / Sign up

Export Citation Format

Share Document