Thermal Evaluation of an Inductive Power Transfer Pad for Charging Electric Vehicles

Author(s):  
Seho Kim ◽  
Maedeh Amirapour ◽  
Tharindu Dharmakeerthi ◽  
Vahid Zahiri Barsari ◽  
Grant A. Covic ◽  
...  
Author(s):  
Michela Longo ◽  
Morris Brenna ◽  
Federica Foiadelli

The environmental pollution caused by fossil fuels is a hot issue around the world in recent years. The gases lead to poor air quality, in particular in large cities, and the global warming that can cause ecological calamity such as tropical cyclones, heatwaves, drought, and extreme tides. International Energy Agency clearly states that the current energy trend is not sustainable environmentally, economically, and socially. Therefore, it must devise solutions to achieve the future economic growth without adverse environmental effects. The increasing diffusion of electric vehicles is driving academic and institutional research towards exploring different possible ways of charging vehicles in a fast, reliable, and safe way. For this reason, wireless power transfer systems have recently been receiving a lot of attention in the academic literature. This chapter reviews the main analytic and computational tools that are typically used to perform analyses in the context of inductive power transfer systems (IPTSs).


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1913 ◽  
Author(s):  
Yafei Chen ◽  
Hailong Zhang ◽  
Sung-Jun Park ◽  
Dong-Hee Kim

In inductive power transfer (IPT) systems, series–series (S-S) and double capacitances and inductances–series (LCCL-S) compensation topologies are widely utilized. In this study, the basic characteristics of S-S and LCCL-S are analyzed and compared in the tuning state. In addition, considering the universality of detuning, and because the two topologies have the same secondary structures, the voltage and current stress on components, input impedances, voltage gains, and output powers of S-S and LCCL-S are mainly analyzed and compared in the detuning state, which is caused by variations in the secondary compensation capacitance. To compare the efficiency of the two topologies and verify the comparative analysis, comparative experiments based on a 2.4-kW IPT experimental prototype are conducted. The comparative result shows that the S-S compensation topology is more sensitive to load variations and less sensitive to secondary compensation capacitance variations than LCCL-S. Both in the tuning and detuning states, the efficiency of the S-S topology is higher in high-power electric vehicle (EV) applications, and the efficiency of LCCL-S is higher in low-power.


Sign in / Sign up

Export Citation Format

Share Document