FPCB Surface Defect Detection: A Decoupled Two-Stage Object Detection Framework

Author(s):  
Jiaxiang Luo ◽  
Zhiyu Yang ◽  
Shipeng Li ◽  
Yilin Wu
Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1650 ◽  
Author(s):  
Xiaoming Lv ◽  
Fajie Duan ◽  
Jia-Jia Jiang ◽  
Xiao Fu ◽  
Lin Gan

Most of the current object detection approaches deliver competitive results with an assumption that a large number of labeled data are generally available and can be fed into a deep network at once. However, due to expensive labeling efforts, it is difficult to deploy the object detection systems into more complex and challenging real-world environments, especially for defect detection in real industries. In order to reduce the labeling efforts, this study proposes an active learning framework for defect detection. First, an Uncertainty Sampling is proposed to produce the candidate list for annotation. Uncertain images can provide more informative knowledge for the learning process. Then, an Average Margin method is designed to set the sampling scale for each defect category. In addition, an iterative pattern of training and selection is adopted to train an effective detection model. Extensive experiments demonstrate that the proposed method can render the required performance with fewer labeled data.


2021 ◽  
Vol 70 ◽  
pp. 1-13
Author(s):  
Lisha Cui ◽  
Xiaoheng Jiang ◽  
Mingliang Xu ◽  
Wanqing Li ◽  
Pei Lv ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


Sign in / Sign up

Export Citation Format

Share Document