Integration of Control Design and System Operation of a High Performance Piezo-Actuated Fast Steering Mirror

2020 ◽  
Vol 25 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Ernst Csencsics ◽  
Benjamin Sitz ◽  
Georg Schitter
Author(s):  
J. Rastegar ◽  
L. Liu ◽  
M. Mattice

Abstract An optimal simultaneous kinematic, dynamic and control design approach is proposed for high performance computer controlled machines such as robot manipulators. The approach is based on the Trajectory Pattern Method (TPM) and a fundamentally new design philosophy that such machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. In the proposed approach, given the structure of the manipulator, its kinematic, dynamic and control parameters are optimized simultaneously with the parameters that describe the selected trajectory pattern. In the example presented in this paper, a weighted sum of the norms of the higher harmonics appearing in the actuating torques and the integral of the position and velocity tracking errors are used to form the optimality criterion. The selected optimality criterion should yield a system that is optimally designed to accurately follow the specified trajectory at high speed. Other objective functions can be readily formulated to synthesize systems for optimal performance. The potentials of the developed method and its implementation for generally defined motion patterns are discussed.


2019 ◽  
Vol 37 (4) ◽  
pp. 1049-1069 ◽  
Author(s):  
Thanh T Tran

Abstract This paper investigates an equivalence between feedback linearization and backstepping control. Implications from equivalence are that stability and performance properties of one method are the same for another method. Thus, a property known to exist only for one method could be used to prove property also holds for another. Also, a suspected advantage of one method over the other could be proven to be a false conjecture. Control laws in both approaches are achieved by coordinate transformations and non-linear feedbacks. Further, resulting non-linear feedback control law achieved by feedback linearization method matches exactly with non-linear controller achieved by the backstepping control design. This equivalence is a general analytical match within the specific class of non-linear dynamic systems under investigation. Demonstrations are considered and validated via flight control of longitudinal dynamics of a high performance aircraft simulation model. Algorithms are tested and evaluated with analytical models and non-linear closed-loop simulation.


Author(s):  
A. Zubizarreta ◽  
E. Portillo ◽  
I. Cabanes ◽  
M. Marcos ◽  
Ch. Pinto

Due to their high performance when executing high-speed and accurate tasks, parallel robots have became the focus of many researchers and companies. However, exploiting the full potential of these robots requires a correct mechatronic design, in which the designed mechanism has to be controlled by a suitable control law in order to achieve the maximum performance. In this paper a novel Validation and Control Environment (VALIDBOT) is proposed as a support for the control design and experimental testing stages of these robots. The proposed open and flexible environment is designed to meet rapid prototyping requirements, offering a high level framework for both students and researchers. The capabilities of the environment are illustrated with an application case based on a 5R parallel robot prototype in which a modified CTC controller is tested.


Author(s):  
Behrooz Shahsavari ◽  
Richard Conway ◽  
Ehsan Keikha ◽  
Fu Zhang ◽  
Roberto Horowitz

This paper presents a novel robust H∞ control design for linear systems with periodic irregular sampling and regular actuation rates. A three-step design algorithm is developed to design a controller that achieves high robustness in terms of disk margin, and high performance in terms of root mean square (RMS) of 3σ-value of performance signal. The proposed method is exploited to design a track-following controller for a hard disk drive (HDD) with 30% sampling time irregularity. The simulation study presented in this paper shows the effectiveness of the proposed control design for high-order systems with large periods.


Sign in / Sign up

Export Citation Format

Share Document