scholarly journals Ka-Band Characterization of Binder Jetting for 3-D Printing of Metallic Rectangular Waveguide Circuits and Antennas

2017 ◽  
Vol 65 (9) ◽  
pp. 3099-3108 ◽  
Author(s):  
Eduardo A. Rojas-Nastrucci ◽  
Justin T. Nussbaum ◽  
Nathan B. Crane ◽  
Thomas M. Weller
Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


Author(s):  
Azar Maalouf ◽  
Ronan Gingat ◽  
Vincent Laur

This study examines K-band rectangular waveguide terminations with three-dimensional (3D)-printed loads, and proposes an Asymmetrical Tapered Wedge topology. This geometry shows a good tradeoff between microwave performance and 3D-printing issues (printing directions and support material requirements), thus improving noticeably the reproducibility of the devices. The effect of the density of the 3D-printed load on the reflection parameter of the termination was investigated. Even for a low density, reflection level remained below −27.5 dB between 18 and 26.5 GHz. Reproducibility was demonstrated by the characterization of six loads that were 3D printed under the same conditions. Measurements demonstrate that a maximum reflection parameter level of −33.5 dB can be ensured over the whole frequency band without any post-machining of the 3D-printed devices.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 212855-212864
Author(s):  
Raul Arruela ◽  
Diogo Marinho Marinho ◽  
Tiago Varum ◽  
Joao Nuno Matos
Keyword(s):  
Ka Band ◽  

2020 ◽  
Vol 36 ◽  
pp. 101445
Author(s):  
T. Dahmen ◽  
C.G. Klingaa ◽  
S. Baier-Stegmaier ◽  
A. Lapina ◽  
D.B. Pedersen ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 1118
Author(s):  
Juan Martinez ◽  
Angel Belenguer ◽  
Héctor Esteban

The characterization of communication devices in a certain frequency band can be accelerated if a fast frequency sweep technique is used instead of a discrete frequency sweep. Existing fast frequency sweep techniques are either complex or specific for a certain electromagnetic solver. In this work, a new fast frequency sweep method is proposed that consists in segmenting the device under analysis into simple building blocks. Each building block is characterized with a generalized (multimode) circuital matrix whose elements present a simple and flat frequency response that is interpolated using natural cubic splines with very few points. In this way, the response of each block along the whole frequency band is obtained efficiently and accurately with as many frequency points as desired. Then, the circuital matrices of all the blocks are cascaded and the circuital matrix of the whole device in obtained. The new fast frequency sweep was successfully applied to the analysis of different types of devices (all metallic rectangular waveguide filter, dielectric loaded rectangular waveguide filter, and substrate integrated waveguide filter). The computational times were reduced to 15% or 19%, depending on the device, when compared with a discrete frequency sweep using the same electromagnetic solver.


Sign in / Sign up

Export Citation Format

Share Document