In Situ High-Resolution AFM Imaging and Force Probing of Cell Culture Medium-Forming Nanogranular Surfaces for Cell Growth

2020 ◽  
Vol 19 (3) ◽  
pp. 385-393
Author(s):  
Mi Li ◽  
Ning Xi ◽  
Yuechao Wang ◽  
Lianqing Liu
2010 ◽  
pp. 819-822 ◽  
Author(s):  
Kristina Martinelle ◽  
Annika Mattsson ◽  
Brita Rippner-Blomqvist ◽  
Elisabeth Lindner

Author(s):  
Rohit Khanna ◽  
Kalpana S. Katti ◽  
Dinesh R. Katti

Characterizing the mechanical characteristics of living cells and cell–biomaterial composite is an important area of research in bone tissue engineering. In this work, an in situ displacement-controlled nanoindentation technique (using Hysitron Triboscope) is developed to perform nanomechanical characterization of living cells (human osteoblasts) and cell–substrate constructs under physiological conditions (cell culture medium; 37 °C). In situ elastic moduli (E) of adsorbed proteins on tissue culture polystyrene (TCPS) under cell culture media were found to be ∼4 GPa as revealed by modulus mapping experiments. The TCPS substrates soaked in cell culture medium showed significant difference in surface nanomechanical properties (up to depths of ∼12 nm) as compared to properties obtained from deeper indentations. Atomic force microscopy (AFM) revealed the cytoskeleton structures such as actin stress fiber networks on flat cells which are believed to impart the structural integrity to cell structure. Load-deformation response of cell was found to be purely elastic in nature, i.e., cell recovers its shape on unloading as indicated by linear loading and unloading curves obtained at 1000 nm indentation depth. The elastic response of cells is obtained during initial cell adhesion (ECell, 1 h, 1000 nm = 4.4–12.4 MPa), cell division (ECell, 2 days, 1000 nm = 1.3–3.0 MPa), and cell spreading (ECell, 2 days, 1000 nm = 6.9–11.6 MPa). Composite nanomechanical responses of cell–TCPS constructs were obtained by indentation at depths of 2000 nm and 3000 nm on cell-seeded TCPS. Elastic properties of cell–substrate composites were mostly dominated by stiff TCPS (EBulk = 5 GPa) lying underneath the cell.


2010 ◽  
Vol 27 (1) ◽  
pp. 209-219 ◽  
Author(s):  
Yunling Bai ◽  
Changjian Wu ◽  
Jia Zhao ◽  
Yan-Hui Liu ◽  
Wei Ding ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 130 ◽  
Author(s):  
Lisa Arodin Selenius ◽  
Marita Wallenberg Lundgren ◽  
Rim Jawad ◽  
Olof Danielsson ◽  
Mikael Björnstedt

Selenium compounds influence cell growth and are highly interesting candidate compounds for cancer chemotherapy. Over decades an extensive number of publications have reported highly efficient growth inhibitory effects with a number of suggested mechanisms f especially for redox-active selenium compounds. However, the studies are difficult to compare due to a high degree of variations in half-maximal inhibitor concentration (IC50) dependent on cultivation conditions and methods to assess cell viability. Among other factors, the variability in culture conditions may affect the experimental outcome. To address this, we have compared the maintenance effects of four commonly used cell culture media on two cell lines, A549 and HepG2, evaluated by the toxic response to selenite and seleno-methylselenocysteine, cell growth and redox homeostasis. We found that the composition of the cell culture media greatly affected cell growth and sensitivity to selenium cytotoxicity. We also provided evidence for change of phenotype in A549 cells when maintained under different culture conditions, demonstrated by changes in cytokeratin 18 (CK18) and vimentin expression. In conclusion, our results have shown the importance of defining the cell culture medium used when comparing results from different studies.


2020 ◽  
Author(s):  
Federica Saponaro ◽  
Marco Borsò ◽  
Sara Verlotta ◽  
Lavinia Bandini ◽  
Alessandro Saba ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 278-285
Author(s):  
Norimitsu Takamura ◽  
Douyan Wang ◽  
Takao Satoh ◽  
Takao Namihira ◽  
Hisato Saitoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document