Deep learning adapted to differential neural networks used as pattern classification of electrophysiological signals

Author(s):  
Dusthon Llorente ◽  
Mariana Ballesteros ◽  
Ivan DE JESUS Salgado Ramos ◽  
Jorge Isaac Chairez Oria
2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4017 ◽  
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Danijel Pavković

Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. This work presents developed and novel technique for deep-learning-based data-driven fault diagnosis for rotary machinery. The proposed technique input raw three axes accelerometer signal as high definition 1D image into deep learning layers which automatically extract signal features, enabling high classification accuracy. Unlike the researches carried out by other researchers, accelerometer data matrix with dimensions 6400 × 1 × 3 is used as input for convolutional neural network training. Since convolutional neural networks can recognize patterns across input matrix, it is expected that wide input matrix containing vibration data should yield good classification performance. Using convolutional neural networks (CNN) trained model, classification in one of the four classes can be performed. Additionally, number of kernels of CNN is optimized using grid search, as preliminary studies show that alternating number of kernels impacts classification results. This study accomplished the effective classification of different rotary machinery states using convolutional artificial neural network for classification of raw three axis accelerometer signal input.


2013 ◽  
Vol 441 ◽  
pp. 738-741 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

The network model of probabilistic neural network and its method of pattern classification and discrimination are first introduced in this paper. Then probabilistic neural network and three usually used back propagation neural networks are established through MATLAB7.0. The pattern classification of dots on a two-dimensional plane is taken as an example. Probabilistic neural network and improved back propagation neural networks are used to classify these dots respectively. Their classification results are compared with each other. The simulation results show that compared with back propagation neural networks, probabilistic neural network has simpler learning rules, faster training speed and it needs fewer training samples; the pattern classification method based on probabilistic neural network is very effective, and it is superior to the one based on back propagation neural networks in classifying speed, accuracy as well as generalization ability.


Author(s):  
Robinson Jiménez-Moreno ◽  
Javier Orlando Pinzón-Arenas ◽  
César Giovany Pachón-Suescún

This article presents a work oriented to assistive robotics, where a scenario is established for a robot to reach a tool in the hand of a user, when they have verbally requested it by his name. For this, three convolutional neural networks are trained, one for recognition of a group of tools, which obtained an accuracy of 98% identifying the tools established for the application, that are scalpel, screwdriver and scissors; one for speech recognition, trained with the names of the tools in Spanish language, where its validation accuracy reach a 97.5% in the recognition of the words; and another for recognition of the user's hand, taking in consideration the classification of 2 gestures: Open and Closed hand, where a 96.25% accuracy was achieved. With those networks, tests in real time are performed, presenting results in the delivery of each tool with a 100% of accuracy, i.e. the robot was able to identify correctly what the user requested, recognize correctly each tool and deliver the one need when the user opened their hand, taking an average time of 45 seconds in the execution of the application.


Sign in / Sign up

Export Citation Format

Share Document