A Fuzzy Logic Controlled Bridge Type Fault Current Limiter for Transient Stability Augmentation of Multi-Machine Power System

2016 ◽  
Vol 31 (1) ◽  
pp. 602-611 ◽  
Author(s):  
Mohammad Ashraf Hossain Sadi ◽  
Mohd. Hasan Ali
2012 ◽  
Vol 588-589 ◽  
pp. 632-637
Author(s):  
Ge Fei Qiu ◽  
Jun Hao Cao ◽  
Zi Qing Xu ◽  
Meng Song ◽  
Lei Chen ◽  
...  

In this paper, the influence of superconducting fault current limiter (SFCL, flux-coupling type) on power system transient stability is studied in detail. The influence of SFCL to transient stability of power system is studied using a model of single generator infinite bus system, different transient stability calculation results gotten with and without SFCL and with model system in different fault conditions are compared. The results show that the SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time, and the application of SFCL in the power system can help to enhance its transient stability.


2021 ◽  
Vol 7 (1) ◽  
pp. 29-39
Author(s):  
Roshan Brahmwanshi ◽  
Eknath Borkar

Due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. the variable speed wind turbine using a doubly fed induction generator (DFIG) is becoming a popular concept and thus the modeling of the DFIG based wind turbine and improvement in the transient fault conditions is an important consideration. In this paper, Transient stability improvement has been done by using Superfluous Fault Current Limiter [SFCL]. A new design of SFCL IGBT- Bridge-type SFCL shunted with a variable resistor Rsh has been proposed. Rsh is modeled to decrease the terminal voltage deviation to minimum level by reducing the amount of current at the bus terminal. Comparison of Voltage deviation and current deviation with the resistive type SFCL and IGBT- bridge-type SFCL show considerable decrease in both quantities by using IGBT- bridge-type SFCL. The values of voltage deviation at the bus terminal is 8.223 e-8 % for proposed SFCL which is less than the resistive type SFCL that is, 14.4 e-8 %.  The huge voltage sag has been considerably reduced by reduction of high level of current to 0.0004401 % in IGBT-bridge-Type SFCL from 0.0004624% in resistive type SFCL. Thus proposed SFCL has caused significant improvement in transient stability keeping the deviation in active and reactive power during faults to minimum level.


Sign in / Sign up

Export Citation Format

Share Document