Path-Tracking Maneuvers With Industrial Robot Manipulators Using Uncalibrated Vision and Impedance Control

Author(s):  
Isela Bonilla ◽  
Marco Mendoza ◽  
Emilio J. Gonzalez-Galván ◽  
César Chavez-Olivares ◽  
Ambrocio Loredo-Flores ◽  
...  
2018 ◽  
Vol 28 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Isela Bonilla ◽  
Marco Mendoza ◽  
Daniel U. Campos-Delgado ◽  
Diana E. Hernández-Alfaro

Abstract The main impedance control schemes in the task space require accurate knowledge of the kinematics and dynamics of the robotic system to be controlled. In order to eliminate this dependence and preserve the structure of this kind of algorithms, this paper presents an adaptive impedance control approach to robot manipulators with kinematic and dynamic parametric uncertainty. The proposed scheme is an inverse dynamics control law that leads to the closed-loop system having a PD structure whose equilibrium point converges asymptotically to zero according to the formal stability analysis in the Lyapunov sense. In addition, the general structure of the scheme is composed of continuous functions and includes the modeling of most of the physical phenomena present in the dynamics of the robotic system. The main feature of this control scheme is that it allows precise path tracking in both free and constrained spaces (if the robot is in contact with the environment). The proper behavior of the closed-loop system is validated using a two degree-of-freedom robotic arm. For this benchmark good results were obtained and the control objective was achieved despite neglecting non modeled dynamics, such as viscous and Coulomb friction.


Author(s):  
Isela Bonilla ◽  
Emilio J González-Galván ◽  
César Chávez-Olivares ◽  
Marco Mendoza ◽  
Ambrocio Loredo-Flores ◽  
...  

2010 ◽  
Vol 130 (3) ◽  
pp. 375-384
Author(s):  
Satoru Kumagai ◽  
Toshimasa Miyazaki ◽  
Kiyoshi Ohishi

2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.


Author(s):  
Kui Hu ◽  
Yunfei Dong ◽  
Dan Wu

Abstract Previous works solve the time-optimal path tracking problems considering piece-wise constant parametrization for the control input, which may lead to the discontinuous control trajectory. In this paper, a practical smooth minimum time trajectory planning approach for robot manipulators is proposed, which considers complete kinematic constraints including velocity, acceleration and jerk limits. The main contribution of this paper is that the control input is represented as the square root of a polynomial function, which reformulates the velocity and acceleration constraints into linear form and transforms the jerk constraints into the difference of convex form so that the time-optimal problem can be solved through sequential convex programming (SCP). The numerical results of a real 7-DoF manipulator show that the proposed approach can obtain very smooth velocity, acceleration and jerk trajectories with high computation efficiency.


Sign in / Sign up

Export Citation Format

Share Document