Obesity Level Estimation based on Machine Learning Methods and Artificial Neural Networks

Author(s):  
Yaren Celik ◽  
Selda Guney ◽  
Berna Dengiz
2020 ◽  
Vol 33 (2) ◽  
pp. e100197 ◽  
Author(s):  
Tsung-Chin Wu ◽  
Zhirou Zhou ◽  
Hongyue Wang ◽  
Bokai Wang ◽  
Tuo Lin ◽  
...  

Mental health questions can be tackled through machine learning (ML) techniques. Apart from the two ML methods we introduced in our previous paper, we discuss two more advanced ML approaches in this paper: support vector machines and artificial neural networks. To illustrate how these ML methods have been employed in mental health, recent research applications in psychiatry were reported.


2019 ◽  
Vol 51 (3) ◽  
pp. 109-116
Author(s):  
Piotr Michalak

Abstract The author presents the results of research on the use of artificial neural networks in predicting voter turnout. He describes the principles of operation of artificial neural networks, as well as detailed results of two machine learning methods used to predict voter turnout. The research resulted in creation of a functional model that allows for prediction of voter turnout results with a considerable degree of accuracy. The entire research process was carried out using the cartographic research method.


Author(s):  
Grzegorz Kłosowski ◽  
Tomasz Rymarczyk

This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


Sign in / Sign up

Export Citation Format

Share Document