Error performance of pulse-based ultra-wideband MIMO systems over indoor wireless channels

2005 ◽  
Vol 4 (6) ◽  
pp. 2939-2944 ◽  
Author(s):  
Huaping Liu ◽  
R.C. Qiu ◽  
Zhi Tian
Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Jia-Ning Guo ◽  
Jian Zhang ◽  
Gang Xin ◽  
Lin Li

As a novel mode of indoor wireless communication, visible light communication (VLC) should consider the illumination functions besides the primary communication function. Dimming control is one of the most crucial illumination functions for VLC systems. However, the transmission efficiency of most proposed dimming control schemes changes as the dimming factor changes. A block coding-based dimming control scheme has been proposed for constant transmission efficiency VLC systems, but there is still room for improvement in dimming range and error performance. In this paper, we propose a dimming control scheme based on extensional constant weight codeword sets to achieve constant transmission efficiency. Meanwhile, we also provide a low implementation complexity decoding algorithm for the scheme. Finally, comparisons show that the proposed scheme can provide a wider dimming range and better error performance.


Author(s):  
T. Cogalan ◽  
H. Haas ◽  
E. Panayirci

Visible light communication (VLC) systems are inherently signal-to-noise ratio (SNR) limited due to link budget constraints. One favourable method to overcome this limitation is to focus on the pre-log factors of the channel capacity. Multiple-input multiple-output (MIMO) techniques are therefore a promising avenue of research. However, inter-channel interference in MIMO limits the achievable capacity. Spatial modulation (SM) avoids this limitation. Furthermore, the performance of MIMO systems in VLC is limited by the similarities among spatial channels. This limitation becomes particularly severe in intensity modulation/direct detection (IM/DD) systems because of the lack of phase information. The motivation of this paper is to propose a system that results in a multi-channel transmission system that enables reliable multi-user optical MIMO SM transmission without the need for a precoder, power allocation algorithm or additional optics at the receiver. A general bit error performance model for the SM system is developed for an arbitrary number of light-emitting diodes (LEDs) in conjunction with pulse amplitude modulation. Based on this model, an LED array structure is designed to result in spatially separated multiple channels by manipulating the transmitter geometry. This article is part of the theme issue ‘Optical wireless communication’.


Sign in / Sign up

Export Citation Format

Share Document