Dynamic power splitting between information and power transfer in non-orthogonal multiple access (invited paper)

Author(s):  
Rose Qingyang Hu ◽  
Zekun Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jingmin Zhang ◽  
Xiaokui Yue ◽  
Xuan Li ◽  
Haofei Zhang ◽  
Tao Ni ◽  
...  

This article focuses on the simultaneous wireless information and power transfer (SWIPT) systems, which provide both the power supply and the communications for Internet-of-Things (IoT) devices in the sixth-generation (6G) network. Due to the extremely stringent requirements on reliability, speed, and security in the 6G network, aerial access networks (AANs) are deployed to extend the coverage of wireless communications and guarantee robustness. Moreover, sparse code multiple access (SCMA) is implemented on the SWIPT system to further promote the spectrum efficiency. To improve the speed and security of SWIPT systems in 6G AANs, we have developed an optimization algorithm of SCMA to maximize the secrecy sum rate (SSR). Specifically, a power-splitting (PS) strategy is applied by each user to coordinate its energy harvesting and information decoding. Hence, the SSR maximization problems in the SCMA system are formulated in terms of the PS and resource allocation, under the constraints on the minimum rates and minimum harvested energy of individual users. Then, a successive convex approximation method is introduced to transform the nonconvex problems to the convex ones, which are then solved by an iterative algorithm. In addition, we investigate the SSR performance of the SCMA system supported by our optimization methods, when the impacts from different perspectives are considered. Our studies and simulation results show that the SCMA system supported by our proposed optimization algorithms significantly outperforms the legacy system with uniform power allocation and fixed PS.


2020 ◽  
Vol 19 (6) ◽  
pp. 4307-4320 ◽  
Author(s):  
Steven Kisseleff ◽  
Symeon Chatzinotas ◽  
Bjorn Ottersten

2013 ◽  
Vol 61 (9) ◽  
pp. 3990-4001 ◽  
Author(s):  
Liang Liu ◽  
Rui Zhang ◽  
Kee-Chaing Chua

Author(s):  
Sharnil Pandya ◽  
Patteti Krishna ◽  
Ravi Shankar ◽  
Ankur Singh Bist

In a defense scenario, the communicating nodes are mobile and, due to this, the fading channel links become time selective in nature. Non-orthogonal multiple access (NOMA) is a promising technique in modern wireless communication systems, and it is employed in a variety of defense ad hoc wireless communication scenarios where nodes are mobile and it is difficult to estimate the channel coefficients perfectly. NOMA contributes to increased spectral efficiency (SE), firstly by enabling fifth-generation new radio deployment in the 3.5 GHz frequency range, and secondly by employing a simultaneous wireless information and power transfer (SWIPT) time switching and power splitting-based cooperative NOMA (C-NOMA) network where simple radio frequency circuitry is used for energy harvesting. NOMA together with the selective decode-and-forward (S-DF) protocol will increase the SE and energy efficiency simultaneously. The outage probability performance is evaluated for various values of the fading severity parameter and node velocity forming the channel error. It is significant to note that digital S-DF-based SWIPT C-NOMA performs much better than an analog amplify-and-forward-based C-NOMA SWIPT system.


2021 ◽  
Vol 10 (2) ◽  
pp. 793-800
Author(s):  
Anh-Tu Le ◽  
Dinh-Thuan Do

In this paper, we investigate non-orthogonal multiple access (NOMA) network relying on wireless power transfer to prolong lifetime. The base station (BS) sends common signals to the relay with two functions (energy harvesting (EH) and signal processing) to further serve two NOMA users in downlink. Performance gap exists since different power allocation factor assigned from power splitting protocol adopted at the relay and such relay employs both amplify-and-forward (AF) and decode-and-forward schemes. To provide performance metrics, we prove formulas of the outage probability which is a function of transmit signal to noise ratio. Simulation results indicate specific parameters to adjust system performance of two user in the considered EH-NOMA system. This finding is important recommendation to design EH-NOMA which shows particular outage performance at required target rates.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 186
Author(s):  
Dinh-Thuan Do ◽  
Anh-Tu Le ◽  
Rupak Kharel ◽  
Adão Silva ◽  
Mohammad Abu Shattal

The authors wish to make the following erratum to this paper [...]


2016 ◽  
Vol 34 (4) ◽  
pp. 938-953 ◽  
Author(s):  
Yuanwei Liu ◽  
Zhiguo Ding ◽  
Maged Elkashlan ◽  
H. Vincent Poor

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3294 ◽  
Author(s):  
Shidang Li ◽  
Chunguo Li ◽  
Weiqiang Tan ◽  
Baofeng Ji ◽  
Luxi Yang

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.


Sign in / Sign up

Export Citation Format

Share Document