Abstract
Unmanned Aerial Ad-hoc Network (UAANET) also knows as by the name of Flying Ad-hoc NETwork (FANET) is a new class of Mobile Ad-hoc NETwork (MANET) in which the nodes move in three dimensional (3-D) ways in the air simultaneously. These nodes are known as Unmanned Aerial Vehicles (UAVs) that are operated live remotely or by pre-defined mechanism which involve no human personnel. Due to high mobility of nodes and dynamic topology, the link stability is a research challenge in FANET. From this viewpoint, recent research has focused on link stability with highest threshold value by maximizing Packet Delivery Ratio (PDR) and minimizing End-to-End Delay (E2ED). In this research, a hybrid scheme named Delay and Link Stability Aware (DLSA) routing scheme has been proposed with the contrast of Distributed Priority Tree-based Routing (DPTR) and Link Stability Estimation-based Routing (LEPR) FANET’s existing routing schemes. Unlike existing schemes, the proposed scheme possesses the features in collaborative data forwarding and link stability by merging the positive features of DPTR and LEPR. The link stability via maximum threshold value has been introduced to acquire and select the most feasible route from source to destination. The simulation was carried out using Matrix Laboratory (MATLAB) tool for the concerned research. Simulation results have showed improved performance of the proposed protocol in contrast to the selected existing ones in terms of E2ED, PDR, Network Lifetime and Transmission Loss. Average E2ED in (milliseconds) of DLSA measured 0.457, while DPTR was 1.492 and LEPR was 1.006. Similarly, Average PDR (in %age) of DLSA measured 3.106, while DPTR was 2.303 and LEPR was 0.682. Average Network Lifetime in (seconds) for DLSA measured 62.141, while DPTR was 23.036 and LEPR was 27.298. Average Transmission Loss in (dBm) for DLSA measured 0.975, while DPTR was 1.053 and LEPR was 1.227.