Resource Optimization for Noncoherent Short-Packet Communications with IR-HARQ

Author(s):  
Na Li ◽  
Deli Qiao
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 53769-53785
Author(s):  
Yuan Lei ◽  
Lining Zeng ◽  
Yan-Xing Li ◽  
Mei-Xia Wang ◽  
Haisheng Qin

Author(s):  
Jianhua He ◽  
Guangheng Zhao ◽  
Lu Wang ◽  
Xue Sun ◽  
Lei Yang

AbstractIn this paper, we investigate the secrecy performance of short-packet transmissions in ultra-reliable and low-latency communications (URLLC). We consider the scenario where a multi-antenna source communicates with a single-antenna legitimate receiver requiring ultra-high reliability and low latency, in the presence of a single-antenna eavesdropper. In order to safeguard URLLC, the source transmits the artificial noise (AN) signal together with the confidential signal to confuse the eavesdropper. We adopt a lower bound on the maximal secrecy rate as the secrecy performance metric for short-packet transmissions in URLLC, which takes the target decoding error probabilities at the legitimate receiver and the eavesdropper into account. Using this metric, we first derive a compact expression of the generalized secrecy outage probability (SOP). Then, we formally prove that the generalized SOP is a convex function with respect to the power allocation factor between the confidential signal and the AN signal. We further determine the optimal power allocation factor that minimizes the generalized SOP. The results presented in this work can be useful for designing new secure transmission schemes for URLLC.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 880
Author(s):  
Faisal Nadeem ◽  
Mahyar Shirvanimoghaddam ◽  
Yonghui Li ◽  
Branka Vucetic

This paper investigates the two-user uplink non-orthogonal multiple access (NOMA) paired with the hybrid automatic repeat request (HARQ) in the finite blocklength regime, where the target latency of each user is the priority. To limit the packet delivery delay and avoid packet queuing of the users, we propose a novel NOMA-HARQ approach where the retransmission of each packet is served non-orthogonally with the new packet in the same time slot. We use a Markov model (MM) to analyze the dynamics of the uplink NOMA-HARQ with one retransmission and characterize the packet error rate (PER), throughput, and latency performance of each user. We also present numerical optimizations to find the optimal power ratios of each user. Numerical results show that the proposed scheme significantly outperforms the standard NOMA-HARQ in terms of packet delivery delay at the target PER.


Sign in / Sign up

Export Citation Format

Share Document