An energy efficient wireless sensor network using spatial correlation based iterative node selection algorithm with routing protocols for multiple sensor nodes

Author(s):  
P.T. Kalaivaani ◽  
A. Rajeswari

Wireless sensor network consists of various sensor nodes connected through wireless media. Sensor nodes are tiny devices having lesser energy capabilities. Sensor nodes are either ad-hoc or mobile in their environment. Wireless sensor network route of transmission media is discovered by routing protocols and responsible for secure communication between sensor nodes. Energy is a precious resource of sensor nodes, and the entire lifetime of WSNs is depending on the energy capability of the sensor nodes. The fundamental problem is how to organize topology of WSN for deployed sensor nodes with lesser power consumption as possible. Major problems in wireless sensor networks which consume extra energy are interference, control message overhead, packet delay, unnecessary transmission, and bandwidth utilization. Therefore, energy efficient techniques are needed to overcome these problems. Hierarchical routing is the best routing method for finding optimal path between sensor nodes which enhance the lifetime of the network. This paper focuses towards various hierarchical energy efficient routing in wireless sensor networks and analyzes various features of WSN that should consider during designing of routing protocols.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


The technological advances in wireless communication systems and digital data processing techniques has given rise to many innovative intelligent networks. One such network is wireless sensor network (WSN). In recent past, huge growth has been perceived in the applications of WSN. In wireless sensor network, the battery powered sensor nodes are scattered in a monitoring area and it is impossible to replace the batteries of sensor nodes after deployment. Therefore, energy efficiency remains a prime concern in design of WSNs. The routing protocols help to find energy efficient routes and increases the lifetime of WSNs. The cluster-based routing techniques play an important role in design of energy efficient WSNs. However, authors analyzed two types of sensor networks in the literature such as homogeneous and heterogeneous networks. In homogeneous clustering, all sensor nodes possess same level of initial energy and cluster head (CH) formation probability of each node in such networks remains equal. In heterogeneous clustering, the nodes are bifurcated into three energy levels such as normal node, advanced node and super node. Therefore, the CH formation probability of a node in such network depends on the type of node. This paper presented a survey on recent energy efficient routing protocols in homogeneous as well as heterogeneous wireless sensor networks. The energy efficient routing protocols are classified based on some quality of service (QoS) metrics such as energy efficiency, network lifetime, network stability, cluster head selection threshold and heterogeneity levels.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 216 ◽  
Author(s):  
Humera Khan

Wireless Sensor Network is a widely growing field and it comprises of tiny sensor nodes. These sensor nodes are distributed in the environment spatially. They are capable of sensing the environment, gathering the information and processing it. Each sensor node collaborate with other sensor nodes for processing the information. Sensor nodes have very limited resources available for their operation. For the purpose of consuming resources in an efficient way several routing algorithms are employed. Here the focus is mainly on hierarchical cluster based routing techniques. In this paper we provide an introduction for wireless sensor network, the requirement for reduction in energy consumption of sensor nodes and some of the already existing energy efficient routing protocols of wireless sensor network.


Author(s):  
ER NEETIKA ◽  
SIMARPREET KAUR

The Wireless Sensor Network(WSN) has become an interesting field of research of the 21st century. It is a type of the wireless ad-hoc network. This has brought about developing low cost, low-power and multi-function sensor nodes. The network life for wireless sensor network plays an important role in survivability. Energy efficiency is one of the critical concerns for wireless sensor networks. Sensor nodes are strictly constrained in terms of storage, board energy and processing capacity. For these reasons, many new protocols have been proposed for the purpose of data routing in sensor networks. These protocols can be classified into three main categories: data-centric, location-based and hierarchical. This paper mainly deals with some of the major Energy-efficient hierarchical routing protocols for wireless sensor networks. First we will discuss the energy-efficient Hierarchical routing protocols in brief along with their important features, objectives, drawbacks and area of application. Finally, we provide a comparison of these various protocols.


Author(s):  
Sreevidya VK

Abstract: Energy awareness is an essential design issue in wireless sensor network. Therefore, attention must be given to the routing protocols since they might differ depending on the application and network architecture. It is desired to design the energy efficient routing protocols to conserve the power supply of sensor node and prolong its lifetime. In this paper Network Coding-Energy efficient geographic routing protocol (NC-EGRPM) in Wireless Sensor network is an energy efficient scheme which prolong the network life time using the mobile sinks. These algorithms focus on the efficiency of network coding, which could be adoptive, flexible, and intelligent enough to distribute the load among the sensor nodes that can enhance the network lifetime. By using NC (Network Coding), we propose an energy efficienct algorithm to handle uncertain level decision better than other models. We also use the concept of XOR encoding and decoding as a mechanism not only for enhancing energy efficiency but also for reducing the end-to-end-delay. XOR-based coding works on a hop-by-hop basis, i.e. packets encoded by a node are decoded by its neighbouring nodes. The idea is that each node v can combine packets using bitwise XOR operations in order to produce an encoded packet. We are implementing our proposed work using NS2 and measure its performance. Keywords: Network coding, XOR, NS2, WSN


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


2015 ◽  
Vol 35 (2) ◽  
pp. 67-73 ◽  
Author(s):  
Felipe Denis Mendonça de Oliveira ◽  
Rodrigo Soares Semente ◽  
Jefferson Doolan Fernandes ◽  
Tálison Augusto Correia de Melo ◽  
Serafim Do Nascimento Júnior ◽  
...  

<p class="Abstractandkeywordscontent"><span lang="EN-US">Nowadays, the vast majority of information monitoring in industrial plants is still carried out by wired technologies, in which the installation and maintenance cost is high. However, in outdoor applications, such as those used in the oil and gas industry, the use of Wireless Sensor Networks (WSN) is increasing due to mobility, reliability, and low cost of the sensor nodes that make up the network. Moreover, this solution reduces the risks of workers in classified areas (regions with high probability of accidents occurrence) to the extent that the equipment maintenance is optimized.  This paper proposes the development of the EEWES, an energy efficient wireless sensor network embedded system, which can be applied on industrial environments. This development approach significantly reduces the energy consumption of the sensor nodes by using a method that alternates sleep periods of the transceiver/sensor set with data transmission/reception periods, which reduces the duty cycle while keeping the desirable parameters of the service quality (QoS). The results presented in this paper will be confirmed by field tests.</span></p>


Sign in / Sign up

Export Citation Format

Share Document