Taming complex bioinformatics workflows with weaver, makeflow, and starch

Author(s):  
Andrew Thrasher ◽  
Rory Carmichael ◽  
Peter Bui ◽  
Li Yu ◽  
Douglas Thain ◽  
...  
2020 ◽  
Author(s):  
Maxence Queyrel ◽  
Edi Prifti ◽  
Jean-Daniel Zucker

AbstractAnalysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and are stored as fastq files. Conventional processing pipelines consist multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Recent studies have demonstrated that training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimentionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life datasets as well a simulated one, we demonstrated that this original approach reached very high performances, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.


Author(s):  
Michael Milton ◽  
Natalie Thorne

Abstract Summary aCLImatise is a utility for automatically generating tool definitions compatible with bioinformatics workflow languages, by parsing command-line help output. aCLImatise also has an associated database called the aCLImatise Base Camp, which provides thousands of pre-computed tool definitions. Availability and implementation The latest aCLImatise source code is available within a GitHub organisation, under the GPL-3.0 license: https://github.com/aCLImatise. In particular, documentation for the aCLImatise Python package is available at https://aclimatise.github.io/CliHelpParser/, and the aCLImatise Base Camp is available at https://aclimatise.github.io/BaseCamp/. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document