scholarly journals Relationships between aboveground plant traits and carbon cycling in tundra plant communities

2022 ◽  
Author(s):  
Konsta Happonen ◽  
Anna‐Maria Virkkala ◽  
Julia Kemppinen ◽  
Pekka Niittynen ◽  
Miska Luoto
Science ◽  
2006 ◽  
Vol 314 (5800) ◽  
pp. 812-814 ◽  
Author(s):  
B. Shipley ◽  
D. Vile ◽  
E. Garnier

2011 ◽  
Vol 8 (8) ◽  
pp. 2047-2061 ◽  
Author(s):  
D. B. Metcalfe ◽  
R. A. Fisher ◽  
D. A. Wardle

Abstract. Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil – such as soil microbes, plant roots and their mycorrhizal symbionts – each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone. We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.


2005 ◽  
Vol 19 (2) ◽  
pp. 355-358 ◽  
Author(s):  
K. THOMPSON ◽  
A. P. ASKEW ◽  
J. P. GRIME ◽  
N. P. DUNNETT ◽  
A. J. WILLIS

2014 ◽  
Vol 1 (1) ◽  
pp. 585-621
Author(s):  
E. Bochet

Abstract. Since seeds are the principle means by which plants move across the landscapes, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals are (1) to offer an updated conceptual model of seed fate with a special attention to seed destiny in and on the soil, (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches and for plant community composition in arid and semiarid patchy ecosystems, and finally (3) to point out directions for future research. Our review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Seed susceptibility to be removed varies highly between species and is mainly related to seed traits, as seed size, seed shape, presence of appendages, and seed ability to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life, by favouring species with seeds able to resist erosion and by selecting for plant traits that prevent seed loss. Moreover, the interaction of seed transport by overland flow with the high seed trapping capacity of vegetated patches results in a "patch-to-patch" transport of seeds that plays a relevant role in vegetation establishment and patterning in arid and semiarid patchy ecosystems. Overall, this review shows how the knowledge about seed fate in overland flow can be used to explain a number of important characteristics of whole plant communities. It also underlines important gaps of knowledge that should be filled in. Future lines of research are proposed in order to broaden our understanding of the origin, maintenance and dynamics of patchiness in arid and semiarid ecosystems and to improve restoration success of intensively eroded ecosystems.


2020 ◽  
Author(s):  
Nayara Mesquita Mota ◽  
Markus Gastauer ◽  
Juan Fernando Carrión ◽  
João Augusto Alves Meira-Neto

AbstractRoad networks cause disturbances that can alter the biodiversity and the functioning of the Caatinga ecosystems. We tested the hypotheses that (i) Caatinga vegetation near roads is less taxonomically, functionally and phylogenetically diverse, (ii) phylogenetically and functionally more clustered than vegetation further from roads, (iii) plant traits associated with herbivory deterrence are conserved within the phylogenetic lineages, and (iv) Caatinga vegetation near roads selects for disturbance-related traits. We sampled herbaceous and woody component of vegetation in four plots near roads and four plots further from roads to test these hypothesis. Sampled species were classified according to their resprouting capacity, nitrogen fixation, succulence/spines, urticancy/toxicity, lifeform, endozoochory, maximum height and maximum diameter, before we calculated the taxonomic, functional and phylogenetic diversity of plant communities. Species richness, taxonomic, functional and phylogenetic diversities were lower in plots close to the roads, confirming roads as sources of disturbances. The phylogenetic structure of the Caatinga vegetation near roads was clustered, indicating environmental filtering by herbivory as the main pervasive disturbance in Caatinga ecosystems, since traits related to herbivory deterrence were conserved within phylogenetic lineages and were filtered in near roads. Thus, roads should be considered degradation conduits causing taxonomic, phylogenetic and functional impoverishment of Caatinga vegetation.


2018 ◽  
Vol 14 (12) ◽  
pp. 20180635 ◽  
Author(s):  
T. Riis ◽  
A. Olesen ◽  
S. M. Jensen ◽  
A. B. Alnoee ◽  
A. Baattrup-Pedersen ◽  
...  

It is a generally accepted theory that ecological functions are enhanced with increased diversity in plant communities due to species complementarity effects. We tested this theory in a mesocosm study using freshwater submerged plant beds to determine if increasing species number caused overyielding and species complementarity. We applied a maximum of four species in the plant beds corresponding to the typical species number in natural freshwater plant beds. We found no clear effects of species number (1–4) on biomass production and thus no conclusive overyielding and complementarity effect. This may be explained by low species differentiation among the four species in plant traits relevant for resource acquisition in freshwater, or that other species interactions, e.g. allelopathy, were inhibiting overyielding. The existing knowledge on species complementarity in aquatic plant communities is sparse and inconclusive and calls for more research.


Plant Ecology ◽  
2018 ◽  
Vol 219 (7) ◽  
pp. 823-835 ◽  
Author(s):  
Elisa Pellegrini ◽  
Francesco Boscutti ◽  
Maria De Nobili ◽  
Valentino Casolo

Sign in / Sign up

Export Citation Format

Share Document