Interactions Between Visual Working Memory and Selective Attention

2000 ◽  
Vol 11 (6) ◽  
pp. 467-473 ◽  
Author(s):  
Paul E. Downing

The relationship between working memory and selective attention has traditionally been discussed as operating in one direction: Attention filters incoming information, allowing only relevant information into short-term processing stores. This study tested the prediction that the contents of visual working memory also influence the guidance of selective attention. Participants held a sample object in working memory on each trial. Two objects, one matching the sample and the other novel, were then presented simultaneously. As measured by a probe task, attention shifted to the object matching the sample. This effect generalized across object type, attentional-probe task, and working memory task. In contrast, a matched task with no memory requirement showed the opposite pattern, demonstrating that this effect is not simply due to exposure to the sample. These results confirm a specific prediction about the influence of working memory contents on the guidance of attention.

2018 ◽  
Author(s):  
Robert M Mok ◽  
M. Clare O'Donoghue ◽  
Nicholas E Myers ◽  
Erin H.S. Drazich ◽  
Anna Christina Nobre

Working memory (WM) is essential for normal cognitive function, but shows marked decline in aging. Studies have shown that the ability to attend selectively to relevant information amongst competing distractors is related to WM capacity. The extent to which WM deficits in aging are related to impairments in selective attention is unclear. To investigate the neural mechanisms supporting selective attention in WM in aging, we tested a large group of older adults using functional magnetic resonance imaging whilst they performed a category-based (faces/houses) selective-WM task. Older adults were able to use attention to encode targets and suppress distractors to reach high levels of task performance. A subsequent, surprise recognition-memory task showed strong consequences of selective attention. Attended items in the relevant category were recognised significantly better than items in the ignored category. Neural measures also showed reliable markers of selective attention during WM. Purported control regions including the dorsolateral and inferior prefrontal and anterior cingulate cortex were reliably recruited for attention to both categories. Activation levels in category-sensitive visual cortex showed reliable modulation according to attentional demands, and positively correlated with subsequent memory measures of attention and WM span. Psychophysiological interaction analyses showed that activity in category-sensitive areas were coupled with non-sensory cortex known to be involved in cognitive control and memory processing, including regions in the PFC and hippocampus. In summary, we found that brain mechanisms of attention for selective WM are relatively preserved in aging, and individual differences in these abilities corresponded to the degree of attention-related modulation in the brain.


2008 ◽  
Vol 118 (12) ◽  
pp. 1673-1688 ◽  
Author(s):  
T. J. Schreppel ◽  
P. Pauli ◽  
H. Ellgring ◽  
A. J. Fallgatter ◽  
M. J. Herrmann

2021 ◽  
Author(s):  
Richard John Allen ◽  
Amy Louise Atkinson

A growing body of research indicates that items assigned with a higher ‘value’ prior to presentationare better recalled in working memory tasks. This has been interpreted as reflecting the strategic prioritization of these items via selective attention during encoding, maintenance, and retrieval. The current study sought to establish whether value-based prioritization effects can be obtained in a sequential visual working memory task when value information is provided retrospectively during maintenance and items are no longer present in the environment. Enhanced recall of high value items along with costs to low value items (relative to equal value trials) was observed, although the high value benefit was only reliably found on the final sequence position. In comparison, a follow- up experiment in which values were provided prior to presentation found large prioritization benefits across sequence positions. This study illustrates that attention can be retrospective shifted between working memory representations based on value, but the effectiveness of this strategic process depends on item availability and accessibility, either in the environment or in working memory.


2021 ◽  
Author(s):  
Daniela Gresch ◽  
Sage Boettcher ◽  
Anna C. Nobre ◽  
Freek van Ede

In everyday life, we often anticipate the timing of one upcoming task or event while actively engaging in another. Here, we investigated temporal expectations within such a multi-task scenario. In a visual working-memory task, we manipulated whether the onset of a working-memory probe could be predicted in time, while also embedding a simple intervening task within the delay period. We first show that working-memory performance benefitted from temporal predictability, even though an intervening task had to be completed in the interim. Moreover, temporal expectations regarding the upcoming working-memory probe additionally affected performance on the intervening task, resulting in faster responses when the memory probe was anticipated early, and slower responses when the memory probe was expected late, as compared to when it was temporally unpredictable. Because the intervening task always occurred at the same time during the memory delay, differences in performance on this intervening task are attributed to a between-task consequence of temporal expectation. Thus, we show that within multi-task settings, knowing when working-memory contents will be required for an upcoming task not only facilitates performance on the associated working-memory task, but can also influence the performance of other, intervening tasks.


Author(s):  
Selma Lugtmeijer ◽  
◽  
Linda Geerligs ◽  
Frank Erik de Leeuw ◽  
Edward H. F. de Haan ◽  
...  

AbstractWorking memory and episodic memory are two different processes, although the nature of their interrelationship is debated. As these processes are predominantly studied in isolation, it is unclear whether they crucially rely on different neural substrates. To obtain more insight in this, 81 adults with sub-acute ischemic stroke and 29 elderly controls were assessed on a visual working memory task, followed by a surprise subsequent memory test for the same stimuli. Multivariate, atlas- and track-based lesion-symptom mapping (LSM) analyses were performed to identify anatomical correlates of visual memory. Behavioral results gave moderate evidence for independence between discriminability in working memory and subsequent memory, and strong evidence for a correlation in response bias on the two tasks in stroke patients. LSM analyses suggested there might be independent regions associated with working memory and episodic memory. Lesions in the right arcuate fasciculus were more strongly associated with discriminability in working memory than in subsequent memory, while lesions in the frontal operculum in the right hemisphere were more strongly associated with criterion setting in subsequent memory. These findings support the view that some processes involved in working memory and episodic memory rely on separate mechanisms, while acknowledging that there might also be shared processes.


2019 ◽  
Vol 19 (10) ◽  
pp. 244d
Author(s):  
Thomas C Sprague ◽  
Aspen H Yoo ◽  
Masih Rahmati ◽  
Grace E Hallenbeck ◽  
Wei Ji Ma ◽  
...  

2019 ◽  
Vol 10 (4) ◽  
pp. 204380871987614
Author(s):  
Nisha Yao ◽  
Marcus A. Rodriguez ◽  
Mengyao He ◽  
Mingyi Qian

Experimental studies have yielded discrepant results regarding the relationship between anxiety and attention bias to threat. Cognitive factors modulating the presence of threat-related attention bias in anxiety have drawn growing attention. Previous research demonstrated that visual working memory (WM) representations can guide attention allocation in a top-down manner. Whether threat-related WM representations affected the presence of attention bias in anxiety awaits examination. Combining a memory task and a dot-probe task, this study investigated how WM representations of faces with neutral or negative expressions modulated the attention bias to threat among highly anxious individuals versus controls. Results showed that highly anxious individuals developed more pronounced attention bias to threat when maintaining WM representations of negative faces as compared to the control group. There were no significant between-group effects when the WM representations were neutral. These results suggested that highly anxious individuals were more susceptible to the influence of mental representations with negative valence on attention deployment.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 98-98
Author(s):  
Corinne Cannavale ◽  
Caitlyn Edwards ◽  
Ruyu Liu ◽  
Samantha Iwinski ◽  
Anne Walk ◽  
...  

Abstract Objectives Carotenoids are plant pigments known to deposit in neural tissues including the hippocampus, a brain substrate that supports several memory forms. However, there is a dearth of knowledge regarding carotenoid status and working memory function in children. Accordingly, this study aimed to understand the relationship between macular and skin carotenoids to visual and auditory working memory (WM) function. Methods Seventy preadolescent children (7–12 years, 32 males) were recruited from the East-Central Illinois area. Auditory working memory was assessed using the story recall subtest of the Woodcock-Johnson IV Test of Cognitive Abilities. A subsample (N = 61, 27 males) completed a visual working memory task and reaction time was quantified to determine speed of memory processing at set sizes of 1 to 4 items. Macular pigment optical density (MPOD) was assessed using customized heterochromatic flicker photometry. Skin carotenoids were assessed using reflection spectroscopy (Veggie Meter). Hierarchical linear regressions were conducted to assess the relationship between carotenoid status and WM function, while controlling for age, sex, income, and whole-body % fat (DXA). Results Auditory WM was positively associated with skin carotenoids (b = 0.263, P = 0.039) but not MPOD (b = −0.044, P = 0.380). In contrast, MPOD was significantly associated with faster visual WM speed at set size 3 (b = −0.253, P = 0.039) and trending at set sizes of 1 (b = −0.225, P = 0.051), 2 (b = −0.171, P = 0.121), and 4 (b = −0.230, P = 0.055). Interestingly, skin carotenoids were not related to visual WM performance at either set size (all P’s > 0.300). Conclusions These results indicate that auditory and visual WM may be differentially related to carotenoids. While skin carotenoids encompass all carotenoids consumed in diet, lutein and zeaxanthin are the only carotenoids which deposit in the macula. Given that MPOD was only related to visual WM, this suggests lutein plays a larger role in these neural functions relative to auditory WM. Interestingly, MPOD's relationship with visual WM increased in strength with the more difficult trial type (i.e., increasing set size), indicating MPOD is related at higher levels of WM capacity. Funding Sources This study was funded by the Egg Nutrition Center.


2020 ◽  
Vol 7 (8) ◽  
pp. 190228 ◽  
Author(s):  
Quan Wan ◽  
Ying Cai ◽  
Jason Samaha ◽  
Bradley R. Postle

How does the neural representation of visual working memory content vary with behavioural priority? To address this, we recorded electroencephalography (EEG) while subjects performed a continuous-performance 2-back working memory task with oriented-grating stimuli. We tracked the transition of the neural representation of an item ( n ) from its initial encoding, to the status of ‘unprioritized memory item' (UMI), and back to ‘prioritized memory item', with multivariate inverted encoding modelling. Results showed that the representational format was remapped from its initially encoded format into a distinctive ‘opposite' representational format when it became a UMI and then mapped back into its initial format when subsequently prioritized in anticipation of its comparison with item n + 2. Thus, contrary to the default assumption that the activity representing an item in working memory might simply get weaker when it is deprioritized, it may be that a process of priority-based remapping helps to protect remembered information when it is not in the focus of attention.


Sign in / Sign up

Export Citation Format

Share Document