Comparative studies of loading lipophilic substances into casein micelles and investigating the influence of whey proteins and heat treatment on loading stability

2018 ◽  
Vol 71 (4) ◽  
pp. 954-965 ◽  
Author(s):  
Henrike Moeller ◽  
Dierk Martin ◽  
Katrin Schrader ◽  
Wolfgang Hoffmann ◽  
Stefanie Pargmann ◽  
...  
2001 ◽  
Vol 68 (3) ◽  
pp. 471-481 ◽  
Author(s):  
CATHERINE SCHORSCH ◽  
DEBORAH K. WILKINS ◽  
MALCOLM G. JONES ◽  
IAN T. NORTON

The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.


1993 ◽  
Vol 60 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Theo J. M. Jeurnink ◽  
Kees G. De Kruif

SummarySkim milk was heated at 85 °C for different holding times. As a result of such heating, whey proteins, in particular β-lactoglobulin, denatured and associated with casein micelles. This led to an increase in size of the casein micelles but also to a different interaction between them. Both these changes could be described by using a quantitative model which was developed for the viscosity of so-called adhesive hard spheres. We applied the model successfully to skim milk and were able to describe on a quantitative basis the changes due to the heat treatment of milk. It was shown that after heating the casein micelles became larger and acquired a mutual attraction. The unfolding of the whey proteins and their subsequent association with the casein micelles appeared to be responsible for these changes. How this reaction influences the fouling of heat exchangers is discussed.


1996 ◽  
Vol 63 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Andrew J. R. Law

SummaryThe effects of heat treatment and subsequent acidification of milk on the distribution of proteins, Ca and Pi, between the serum and micellar phases were examined using ultracentrifugation. After heating milk at 85 °C for 10 min, and storing for 22 h at 4, 20 or 30 °C, there was a marked increase in the concentration of κ-casein in the serum. At 4 and 20 °C there was also slightly more β-casein in the serum from heat-treated milk than in that from the corresponding raw milk. The whey proteins were extensively denatured, and were almost equally distributed between the supernatants and micellar pellets. After storage for 22 h the distribution of Ca and Pi between soluble and colloidal phases in heat-treated milk was similar to that in raw milk. After acidifying heat-treated milk by the addition of glucono-δ-lactone and storing for 22 h at 4, 20 or 30 °C there was progressive solubilization of colloidal calcium phosphate with decreasing pH, and at pH 5·0 almost all of the Ca and Pi was present in the serum. At 20 °C, and even more so at 4 °C, serum concentrations of the individual caseins increased considerably with decreasing pH, reaching maximum levels of about 25 and 40% of the total casein at pH 5·7 and 5·5 respectively, and then decreasing rapidly at lower pH. Compared with raw milk, maximum dissociation in heat-treated milks stored at 4 and 20 °C occurred at higher pH, and the overall levels of dissociation of individual caseins from the micelles were lower. At 30 °C, the concentrations of individual caseins in the serum of heat-treated milk decreased steadily as the pH was reduced, and did not show the slight increase found previously for raw milk. The role of the denatured whey proteins in interacting with κ-casein and in promoting aggregation of the micelles on acidification is discussed.


1998 ◽  
Vol 65 (4) ◽  
pp. 555-567 ◽  
Author(s):  
JOHN A. LUCEY ◽  
MICHELLE TAMEHANA ◽  
HARJINDER SINGH ◽  
PETER A. MUNRO

The effect of interactions of denatured whey proteins with casein micelles on the rheological properties of acid milk gels was investigated. Gels were made by acidification of skim milk with glucono-δ-lactone at 30°C using reconstituted skim milk powders (SMP; both low- and ultra-low-heat) and fresh skim milk (FSM). The final pH of the gels was ∼4·6. Milks containing associated or ‘bound’ denatured whey proteins (BDWP) with casein micelles were made by resuspending the ultracentrifugal pellet of heated milk in ultrafiltration permeate. Milks containing ‘soluble’ denatured whey protein (SDWP) aggregates were formed by heat treatment of an ultracentrifugal supernatant which was then resuspended with the pellet. Acid gels made from unheated milks had low storage moduli, G′, of <20 Pa. Heating milks at 80°C for 30 min resulted in acid gels with G′ in the range 390–430 Pa. The loss tangent (tan δ) of gels made from heated milk increased after gelation to attain a maximum at pH ∼5·1, but no maximum was observed in gels made from unheated milk. Acid gels made from milks containing BDWP that were made from low-heat SMP, ultra-low-heat SMP and FSM had G′ of about 250, 270 and 310 Pa respectively. Acid gels made from milks containing SDWP that were made from ultra-low-heat SMP or FSM had G′ values in the range 17–30 Pa, but gels made from low-heat SMP had G′ of ∼140 Pa. It was concluded that BDWP were important for the increased G′ of acid gels made from heated milk. Addition of N-ethylmaleimide (NEM) to low-heat reconstituted milk, to block the —SH groups, resulted in a reduction of the G′ of gels formed from heated milk but did not reduce G′ to the value of unheated milk. Addition of 20 mm-NEM to FSM, prior to heat treatment, resulted in gels with a lower G′ value than gels made from reconstituted low-heat SMP. It was suggested that small amounts of denatured whey proteins associated with casein micelles during low-heat SMP manufacture were probably responsible for the higher G′ of gels made from milk containing SDWP and from milk heated in the presence of 20 mm-NEM, compared with gels made from FSM.


1997 ◽  
Vol 64 (4) ◽  
pp. 495-504 ◽  
Author(s):  
BRENT R. WARD ◽  
SIMON J. GODDARD ◽  
MARY-ANN AUGUSTIN ◽  
IAN R. McKINNON

The effects of addition of EDTA on the dissociation of caseins and foaming properties of milks (100 g solids/l) reconstituted from skim milk powders given a low-heat (72°C for 30 s) or high-heat (85°C for 30 min) treatment during powder manufacture were determined. The EDTA-induced dissociation of caseins was independent of heat treatment but in high-heat milk was accompanied by release of denatured whey proteins. EDTA changed the proportions of individual caseins in the supernatant. EDTA addition improved both foam overrun and foam stability of low- and high-heat milks. The increase in serum protein on addition of EDTA contributed to the improvement in foaming properties of milks by increasing the availability of the proteins for formation of the air–water interface.


2003 ◽  
Vol 70 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Skelte G Anema ◽  
Yuming Li

When skim milk at pH 6·55 was heated (75 to 100 °C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30–35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of β-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6·5 to pH 6·7.


2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


2018 ◽  
Vol 112 ◽  
pp. 74-82 ◽  
Author(s):  
Mina Sobhaninia ◽  
Ali Nasirpour ◽  
Mohammad Shahedi ◽  
Abdolkhalegh Golkar ◽  
Stephane Desobry

Sign in / Sign up

Export Citation Format

Share Document