scholarly journals Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park

2020 ◽  
Vol 12 (5) ◽  
pp. 503-513
Author(s):  
Annastacia C. Bennett ◽  
Senthil K. Murugapiran ◽  
Trinity L. Hamilton
2006 ◽  
Vol 361 (1475) ◽  
pp. 1997-2008 ◽  
Author(s):  
David M Ward ◽  
Mary M Bateson ◽  
Michael J Ferris ◽  
Michael Kühl ◽  
Andrea Wieland ◽  
...  

We have investigated microbial mats of alkaline siliceous hot springs in Yellowstone National Park as natural model communities to learn how microbial populations group into species-like fundamental units. Here, we bring together empirical patterns of the distribution of molecular variation in predominant mat cyanobacterial populations, theory-based modelling of how to demarcate phylogenetic clusters that correspond to ecological species and the dynamic patterns of the physical and chemical microenvironments these populations inhabit and towards which they have evolved adaptations. We show that putative ecotypes predicted by the theory-based model correspond well with distribution patterns, suggesting populations with distinct ecologies, as expected of ecological species. Further, we show that increased molecular resolution enhances our ability to detect ecotypes in this way, though yet higher molecular resolution is probably needed to detect all ecotypes in this microbial community.


Author(s):  
G. Minshall ◽  
Christopher Robinson

The recovery of stream ecosystems in Yellowstone National Park following the fires of 1988 has been punctuated by disturbances caused by high flows in 1991 and again in 1992. In at least a third of the study sites, changes in channel conditions in 1992 were equal or greater than those documented in the preceding year. These impacts are expected to translate into reductions in primary production, benthic organic matter, and macroinvertebrate abundance and diversity over the next few years in most of streams draining burned watersheds in and adjacent to the Park. However, in Cache Creek and its tributaries the changes are so profound that recovery of biotic structure and function to prefire or reference stream conditions are unlikely to occur in succeeding decades or even centuries. Comparison of conditions in Cache Creek with those in other, less severely impacted watersheds in subsequent years could provide valuable insights into the differences in ecosystem response to severe versus moderate disturbance following fire or other comparable impacts such as overgrazing or climate change. The changes which occurred in Cache Creek in 1992 are expected to result in much reduced rates of recovery in ecosystem structure and function and possibly to the establishment of new (lowered) equilibrium conditions. Although such a possible outcome has been postulated (Minshall et al. 1989), the ideas have never been tested. Examination of additional streams, coupled with analysis using Geographical Information System (GIS), would permit determination of whether the adverse effects seen in Cache Creek are widespread or limited to only a f drainages and whether they are in the normal range of conditions or have been magnified as a result of fire suppression or other factors.


2021 ◽  
Author(s):  
Eva De Boever ◽  
David Jaramillo‐Vogel ◽  
Anne‐Sophie Bouvier ◽  
Norbert Frank ◽  
Andrea Schröder‐Ritzrau ◽  
...  

2007 ◽  
Vol 73 (20) ◽  
pp. 6669-6677 ◽  
Author(s):  
Eric S. Boyd ◽  
Robert A. Jackson ◽  
Gem Encarnacion ◽  
James A. Zahn ◽  
Trevor Beard ◽  
...  

ABSTRACT Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.


2003 ◽  
Vol 40 (11) ◽  
pp. 1611-1642 ◽  
Author(s):  
Donald R Lowe ◽  
Deena Braunstein

Slightly alkaline hot springs and geysers in Yellowstone National Park exhibit distinctive assemblages of high-temperature (>73 °C) siliceous sinter reflecting local hydrodynamic conditions. The main depositional zones include subaqueous pool and channel bottoms and intermittently wetted subaerial splash, surge, and overflow areas. Subaqueous deposits include particulate siliceous sediment and dendritic and microbial silica framework. Silica framework forms thin, porous, microbe-rich films coating subaqueous surfaces. Spicules with intervening narrow crevices dominate in splash zones. Surge and overflow deposits include pool and channel rims, columns, and knobs. In thin section, subaerial sinter is composed of (i) dark brown, nearly opaque laminated sinter deposited on surfaces that evaporate to dryness; (ii) clear translucent silica deposited subaqueously through precipitation driven by supersaturation; (iii) heterogeneous silica representing silica-encrusted microbial filaments and detritus; and (iv) sinter debris. Brownish laminations form the framework of most sinter deposited in surge and overflow zones. Pits and cavities are common architectural features of subaerial sinter and show concave-upward pseudo-cross-laminations and micro-unconformities developed through migration. Marked birefringence of silica deposited on surfaces that evaporate to dryness is probably a strain effect. Repeated wetting and evaporation, often to dryness, and capillary effects control the deposition, morphology, and microstructure of most high-temperature sinter outside of the fully subaqueous zone. Microbial filaments are abundant on and within high-temperature sinter but do not provide the main controls on morphology or structuring except in biofilms developed on subaqueous surfaces. Millimetre-scale lamination cyclicity in much high-temperature sinter represents annual layering and regular seasonal fluctuations in silica sedimentation.


2015 ◽  
Vol 81 (17) ◽  
pp. 5907-5916 ◽  
Author(s):  
Z. J. Jay ◽  
J. P. Beam ◽  
A. Dohnalkova ◽  
R. Lohmayer ◽  
B. Bodle ◽  
...  

ABSTRACTThermoproteales(phylumCrenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolatePyrobaculum yellowstonensisstrain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurringin situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for thede novosynthesis of nearly all required cofactors and metabolites were identified. The comparative genomics ofP. yellowstonensisand the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) toin situpopulations. The physiological attributes and metabolic capabilities ofP. yellowstonensisprovide an important foundation for developing an understanding of the distribution and function of these populations in YNP.


Sign in / Sign up

Export Citation Format

Share Document