scholarly journals Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch

2014 ◽  
Vol 40 (2) ◽  
pp. 2389-2398 ◽  
Author(s):  
Alexander Jones ◽  
Bettina Forster
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Tang ◽  
Xueli Wang ◽  
Xing Peng ◽  
Qi Li ◽  
Chi Zhang ◽  
...  

AbstractInhibition of return (IOR) refers to the slower response to targets appearing on the same side as the cue (valid locations) than to targets appearing on the opposite side as the cue (invalid locations). Previous behaviour studies have found that the visual IOR is larger than the audiovisual IOR when focusing on both visual and auditory modalities. Utilising the high temporal resolution of the event-related potential (ERP) technique we explored the possible neural correlates with the behaviour IOR difference between visual and audiovisual targets. The behavioural results revealed that the visual IOR was larger than the audiovisual IOR. The ERP results showed that the visual IOR effect was generated from the P1 and N2 components, while the audiovisual IOR effect was derived only from the P3 component. Multisensory integration (MSI) of audiovisual targets occurred on the P1, N1 and P3 components, which may offset the reduced perceptual processing due to audiovisual IOR. The results of early and late differences in the neural processing of the visual IOR and audiovisual IOR imply that the two target types may have different inhibitory orientation mechanisms.


2019 ◽  
Vol 122 (4) ◽  
pp. 1538-1554 ◽  
Author(s):  
Sanjna Banerjee ◽  
Shrey Grover ◽  
Suhas Ganesh ◽  
Devarajan Sridharan

Endogenous cueing of attention enhances sensory processing of the attended stimulus (perceptual sensitivity) and prioritizes information from the attended location for guiding behavioral decisions (spatial choice bias). Here, we test whether sensitivity and bias effects of endogenous spatial attention are under the control of common or distinct mechanisms. Human observers performed a multialternative visuospatial attention task with probabilistic spatial cues. Observers’ behavioral choices were analyzed with a recently developed multidimensional signal detection model (the m-ADC model). The model effectively decoupled the effects of spatial cueing on sensitivity from those on spatial bias and revealed striking dissociations between them. Sensitivity was highest at the cued location and not significantly different among uncued locations, suggesting a spotlight-like allocation of sensory resources at the cued location. On the other hand, bias varied systematically with cue validity, suggesting a graded allocation of decisional priority across locations. Cueing-induced modulations of sensitivity and bias were uncorrelated within and across subjects. Bias, but not sensitivity, correlated with key metrics of prioritized decision-making, including reaction times and decision optimality indices. In addition, we developed a novel metric, differential risk curvature, for distinguishing bias effects of attention from those of signal expectation. Differential risk curvature correlated selectively with m-ADC model estimates of bias but not with estimates of sensitivity. Our results reveal dissociable effects of endogenous attention on perceptual sensitivity and choice bias in a multialternative choice task and motivate the search for the distinct neural correlates of each. NEW & NOTEWORTHY Attention is often studied as a unitary phenomenon. Yet, attention can both enhance the perception of important stimuli (sensitivity) and prioritize such stimuli for decision-making (bias). Employing a multialternative spatial attention task with probabilistic cueing, we show that attention affects sensitivity and bias through dissociable mechanisms. Specifically, the effects on sensitivity alone match the notion of an attentional “spotlight.” Our behavioral model enables quantifying component processes of attention, and identifying their respective neural correlates.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0119521
Author(s):  
Yingying Tang ◽  
Yan Li ◽  
Kaiming Zhuo ◽  
Yan Wang ◽  
Liwei Liao ◽  
...  

2020 ◽  
Author(s):  
Frederik Geweke ◽  
Emilia Pokta ◽  
Viola S. Störmer

Spatial attention can be deployed exogenously, based on salient events in the environment, or endogenously, based on current task goals. Numerous studies have compared the time courses of these two types of attention, and have demonstrated that exogenous attention is fast and transient and endogenous attention is relatively slow but sustained. In the present study we investigated whether and how the temporal dynamics of exogenous and endogenous attention differ in terms of where attention is deployed in the visual field, in particular at locations nearby or far from fixation. Across a series experiments, we measured attentional shift times for each type of attention, and found overall slower deployment of endogenous relative to exogenous attention, in line with previous research. Importantly, we also consistently found that it takes longer to deploy attention at more distant locations relative to nearby locations, regardless of how attention was instigated. Overall, our results suggest that the temporal limits of attentional deployment across different spatial distances are similar for exogenous and endogenous attention, pointing to shared constraints underlying both attentional modes.


2014 ◽  
Author(s):  
Sebastiaan Mathôt ◽  
Edwin S. Dalmaijer ◽  
Jonathan Grainger ◽  
Stefan Van der Stigchel

Here we show that the pupillary light response reflects exogenous (involuntary) shifts of attention and inhibition of return. Participants fixated in the center of a display that was divided into a bright and a dark half. An exogenous cue attracted attention to the bright or dark side of the display. Initially, the pupil constricted when the bright, as compared to the dark side of the display was cued, reflecting a shift of attention towards the exogenous cue. Crucially, this pattern reversed about one second after cue presentation. This later-occurring, relative dilation (when the bright side was cued) reflected disengagement from the previously attended location, analogous to the behavioral phenomenon of inhibition of return. Indeed, we observed a strong correlation between 'pupillary inhibition' and behavioral inhibition of return. We conclude that the pupillary light response is a complex eye movement that reflects how we selectively parse and interpret visual input.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Dugué ◽  
Elisha P. Merriam ◽  
David J. Heeger ◽  
Marisa Carrasco

AbstractHow do endogenous (voluntary) and exogenous (involuntary) attention modulate activity in visual cortex? Using ROI-based fMRI analysis, we measured fMRI activity for valid and invalid trials (target at cued/un-cued location, respectively), pre- or post-cueing endogenous or exogenous attention, while participants performed the same orientation discrimination task. We found stronger modulation in contralateral than ipsilateral visual regions, and higher activity in valid- than invalid-trials. For endogenous attention, modulation of stimulus-evoked activity due to a pre-cue increased along the visual hierarchy, but was constant due to a post-cue. For exogenous attention, modulation of stimulus-evoked activity due to a pre-cue was constant along the visual hierarchy, but was not modulated due to a post-cue. These findings reveal that endogenous and exogenous attention distinctly modulate activity in visuo-occipital areas during orienting and reorienting; endogenous attention facilitates both the encoding and the readout of visual information whereas exogenous attention only facilitates the encoding of information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Maria Portugal ◽  
Rachael Bedford ◽  
Celeste H. M. Cheung ◽  
Luke Mason ◽  
Tim J. Smith

AbstractChildhood screen time is associated with both attentional difficulties (for television viewing) and benefits (in action video gamers), but few studies have investigated today’s pervasive touchscreen devices (e.g. smartphones and tablets), which combine salient features, interactive content, and accessibility from toddlerhood (a peak period of cognitive development). We tested exogenous and endogenous attention, following forty children who were stable high (HU) or low (LU) touchscreen users from toddlerhood to pre-school. HUs were slower to disengage attention, relative to their faster baseline orienting ability. In an infant anti-saccade task, HUs displayed more of a corrective strategy of orienting faster to distractors before anticipating the target. Results suggest that long-term high exposure to touchscreen devices is associated with faster exogenous attention and concomitant decreases in endogenous attention control. Future work is required to demonstrate causality, dissociate variants of use, and investigate how attention behaviours found in screen-based contexts translate to real-world settings.


2004 ◽  
Vol 92 (3) ◽  
pp. 1728-1737 ◽  
Author(s):  
Jillian H. Fecteau ◽  
Andrew H. Bell ◽  
Douglas P. Munoz

How do stimuli in the environment interact with the goals of observers? We addressed this question by showing that the relevance of an abruptly appearing visual object (cue) changes how observers orient attention toward a subsequent object (target) and how this target is represented in the activity of neurons in the superior colliculus. Initially after the appearance of the cue, attention is driven to its locus. This capture of attention is followed by a second bias in orienting attention, where observers preferentially orient to new locations in the visual scene—an effect called inhibition of return. In the superior colliculus, these two automatic biases in orienting attention were associated with changes in neural activity linked to the appearance of the target—relatively stronger activity linked to the capture of attention and weaker activity linked to inhibition of return. This behavioral pattern changes when the cue predicts the upcoming location of the target—the benefit associated with the capture of attention is enhanced and inhibition of return is reduced. These goal-driven changes in behavior were associated with an increase in pretarget- and target-related activity. Taken together, the goals of observers modify stimulus-driven changes in neural activity with both signals represented in the salience maps of the superior colliculi.


Sign in / Sign up

Export Citation Format

Share Document