scholarly journals Differential contributions of intra‐cellular and inter‐cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild‐type, cryptochrome‐null and vasoactive intestinal peptide receptor 2‐null mutant mice

2014 ◽  
Vol 40 (3) ◽  
pp. 2528-2540 ◽  
Author(s):  
S. Pauls ◽  
N. C. Foley ◽  
D. K. Foley ◽  
J. LeSauter ◽  
M. H. Hastings ◽  
...  
2003 ◽  
Vol 23 (22) ◽  
pp. 8233-8245 ◽  
Author(s):  
Natalia Ninkina ◽  
Katerina Papachroni ◽  
Darren C. Robertson ◽  
Oliver Schmidt ◽  
Liz Delaney ◽  
...  

ABSTRACT Homologous recombination in ES cells was employed to generate mice with targeted deletion of the first three exons of the γ-synuclein gene. Complete inactivation of gene expression in null mutant mice was confirmed on the mRNA and protein levels. Null mutant mice are viable, are fertile, and do not display evident phenotypical abnormalities. The effects of γ-synuclein deficiency on motor and peripheral sensory neurons were studied by various methods in vivo and in vitro. These two types of neurons were selected because they both express high levels of γ-synuclein from the early stages of mouse embryonic development but later in the development they display different patterns of intracellular compartmentalization of the protein. We found no difference in the number of neurons between wild-type and null mutant animals in several brain stem motor nuclei, in lumbar dorsal root ganglia, and in the trigeminal ganglion. The survival of γ-synuclein-deficient trigeminal neurons in various culture conditions was not different from that of wild-type neurons. There was no difference in the numbers of myelinated and nonmyelinated fibers in the saphenous nerves of these animals, and sensory reflex thresholds were also intact in γ-synuclein null mutant mice. Nerve injury led to similar changes in sensory function in wild-type and mutant mice. Taken together, our data suggest that like α-synuclein, γ-synuclein is dispensable for the development and function of the nervous system.


1999 ◽  
Vol 91 (5) ◽  
pp. 1329-1329 ◽  
Author(s):  
Daisy T. Joo ◽  
Zhigang Xiong ◽  
John F. MacDonald ◽  
Zhengping Jia ◽  
John Roder ◽  
...  

Background Barbiturates enhance gamma-aminobutyric acid type A (GABA(A)) receptor function and also inhibit the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates. Methods GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABA(A) receptors. Results Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 microM), thiopental (IC50, 153 vs. 34 microM), and phenobarbital (IC50, 930 vs. 205 microM) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABA(A) receptors by pentobarbital. Conclusions The GluR2 null mutant mice were more sensitive to pentobarbital anesthesia despite a reduced sensitivity of GluR2-deficient AMPA receptors to barbiturate blockade. Our results indicate that the inhibition of AMPA receptors does not correlate with the anesthetic effects of barbiturates in this animal model. We postulate that the increase in the sensitivity to anesthetics results from a global suppression of excitatory neurotransmission in GluR2-deficient mice.


2002 ◽  
Vol 93 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
K. A. Sanders ◽  
K. M. Sundar ◽  
L. He ◽  
B. Dinger ◽  
S. Fidone ◽  
...  

It has been hypothesized that O2sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O2sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plethysmography was used to study unanesthetized, unrestrained mice. When exposed to an acute hypoxic stimulus, gp91phox-null mutant and wild-type mice increased their minute ventilation by similar amounts. In contrast, p47phox-null mutant mice demonstrated increases in minute ventilation in response to hypoxia that exceeded that of their wild-type counterparts: 98.0 ± 18.0 vs. 20.0 ± 13.0% ( n = 11, P = 0.003). In vitro recordings of carotid sinus nerve (CSN) activity demonstrated that resting (basal) neural activity was marginally elevated in p47phox-null mutant mice. With hypoxic challenge, mean CSN discharge was 1.5-fold greater in p47phox-null mutant than in wild-type mice: 109.61 ± 13.29 vs. 72.54 ± 7.65 impulses/s ( n = 8 and 7, respectively, P = 0.026). Consequently, the hypoxia-evoked CSN discharge (stimulus-basal) was ∼58% larger in p47phox-null mutant mice. Quantities of EPO mRNA in kidney were similar in gp91phox- and p47phox-null mutant mice and their respective wild-type controls exposed to hypobaric hypoxia for 72 h. These findings confirm the previous observation that absence of the gp91phoxcomponent of the phagocytic NADPH oxidase does not alter the O2-sensing mechanism of the carotid body. However, absence of the p47phoxcomponent significantly potentiates ventilatory and chemoreceptor responses to hypoxia. O2sensing in EPO-producing cells of the kidney appears to be independent of the gp91phoxand p47phoxcomponents of the phagocytic NADPH oxidase.


Endocrinology ◽  
2000 ◽  
Vol 141 (7) ◽  
pp. 2698-2702 ◽  
Author(s):  
Angelo Contarino ◽  
Françoise Dellu ◽  
George F. Koob ◽  
George W. Smith ◽  
Kuofen Lee ◽  
...  

ABSTRACT Corticotropin-releasing factor (CRF) systems are involved in locomotor and feeding behaviors. Two distinct CRF receptor subtypes, CRFR1 and CRFR2, are thought to mediate CRF actions in the central nervous system. However, the role for each receptor in locomotor activity and feeding remains to be determined. Using CRFR1 null mutant mice, the present study examined the functional significance of this receptor in ambulation and feeding. CRF treatment of wild-type mice resulted in increased levels of locomotion whereas no change was observed in CRFR1-deficient mice as compared to vehicle-treated mutant mice. In contrast, CRF decreased food-water intake in both wild type and CRFR1-deficient mice equally. These results support an important role for CRFR1 in mediating CRF-induced locomotor activation, whereas other receptor subtypes, likely CRFR2, may mediate the appetite-suppressing effects of CRF-like peptides.


1998 ◽  
Vol 330 (1) ◽  
pp. 149-153 ◽  
Author(s):  
R. Peter SINCLAIR ◽  
Nadia GORMAN ◽  
Tim DALTON ◽  
S. Heidi WALTON ◽  
J. William BEMENT ◽  
...  

In the present study we have investigated the putative requirement for the cytochrome P-450 isoform CYP1A2 in murine uroporphyria, by comparing Cyp1a2(-/-) knockout mice with Cyp1a2(+/+) wild-type mice. Uroporphyria was produced by injecting animals with iron-dextran and giving the porphyrin precursor 5-aminolaevulinic acid in the drinking water. Some animals also received 3-methylcholanthrene (MC) to induce hepatic CYP1A2. In both protocols, uroporphyria was elicited by these treatments in the Cyp1a2(+/+) wild-type mice, but not in the null mutant mice. Uroporphyrinogen oxidation activity in hepatic microsomes from untreated Cyp1a2(+/+) mice was 2.5-fold higher than in Cyp1a2(-/-) mice. Treatment with MC increased hepatic CYP1A1 in both mouse lines and hepatic CYP1A2 only in the Cyp1a2(+/+) line, as determined by Western immunoblotting. MC increased hepatic ethoxy- and methoxy-resorufin O-dealkylase activities in both mouse lines, but increased uroporphyrinogen oxidation activity in the Cyp1a2(+/+) wild-type mice only. These results indicate the absolute requirement for hepatic CYP1A2 in causing experimental uroporphyria under the conditions used.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2555-2562 ◽  
Author(s):  
Jason Karpac ◽  
Dirk Ostwald ◽  
Stephanie Bui ◽  
Peggy Hunnewell ◽  
Malini Shankar ◽  
...  

Abstract Adult mouse mutants homozygous for an engineered proopiomelanocortin (POMC)-null allele lack macroscopically distinct adrenal glands and circulating adrenal hormones. To understand the basis for this adrenal defect, we compared the development of adrenal primordia in POMC-null mice and littermate controls. POMC-null mutant mice are born with adrenal glands that are morphologically indistinguishable from those of their wild-type littermates. However, in mutants adrenal cells fail to proliferate postnatally and adrenals atrophy until they have disappeared macroscopically in the adult. While present, mutant adrenals are differentiated as evidenced by the presence of enzymes for the final steps in the synthesis of corticosterone, aldosterone, and catecholamines. However, in contrast to adrenals of wild-type littermates, adrenals of POMC-null mutants do not produce corticosterone, not even in response to acute stimulation with exogenous ACTH. They do produce aldosterone; however, it is produced at reduced levels correlating with adrenal size. Transplantation of POMC-null mutant adrenals to adrenalectomized wild-type littermates results in adrenals with normal morphology and production of both corticosterone and aldosterone. These findings demonstrate that POMC peptides are not required for prenatal adrenal development and that POMC peptides in addition to ACTH are required for postnatal proliferation and maintenance of adrenal structures capable of producing both glucocorticoids and mineralocorticoids.


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2279-2288 ◽  
Author(s):  
Norio Suzuki ◽  
Osamu Ohneda ◽  
Satoru Takahashi ◽  
Masato Higuchi ◽  
Harumi Y. Mukai ◽  
...  

Erythropoietin (Epo) and its receptor (EpoR) are indispensable to erythropoiesis. Although roles besides angiogenesis, such as neuroprotection and heart development, have been reported for the Epo-EpoR system, the precise contribution of Epo-EpoR to these nonhematopoietic tissues requires clarification. Exploiting aGATA-1 minigene cassette with hematopoietic regulatory domains, we established 2 lines of transgene-rescued EpoR-null mutant mice expressing EpoR exclusively in the hematopoietic lineage. Surprisingly, despite the lack of EpoR expression in nonhematopoietic tissues, these mice develop normally and are fertile. As such, we could exploit them for analyzing the roles of the Epo-EpoR system in adult hematopoiesis and in nonhematopoietic tissues. These rescued lines showed a differential level of EpoR expression in erythroid cells; one expressed approximately 40%, and the other expressed 120% of the wild-type EpoR level. A colony formation assay showed that erythroid progenitors in the 2 mutant lines exhibit distinct sensitivity to Epo. The circulating Epo level was much higher in the transgenic line with a lower EpoR expression. In response to induced anemia, the plasma Epo concentrations increased in both lines. Notably, the timing of the peak of plasma Epo concentration was delayed in both lines of rescued mice compared with wild type, suggesting that, in wild-type mice, nonhematopoietic EpoR contributes to the regulation of plasma Epo concentration. We thus conclude that nonhematopoietic expression of EpoR is dispensable to normal mouse development and that the expression level of EpoR regulates erythropoiesis by controlling the sensitivity of erythroid progenitors to Epo.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Kailash N Pandey ◽  
Umadevi Subramanian

Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) in mice exhibits high blood pressure, cardiac hypertrophy, fibrosis, and remodeling leading to congestive heart failure. The objective of this study was to determine the mechanisms regulating the development of fibrosis in Npr1 gene-disrupted mice hearts. The Npr1 null mutant (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were administered by oral gavage with transforming growth factor-β1 (TGF- β1) receptor inhibitor GW788388 (1mg/kg/day) for 28 days. The heart tissues were isolated and used for quantification of fibrotic markers by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analyses. Together, systolic blood pressure (SBP), heart weight-to-body weight (HW/BW) ratio, left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVEDS), and percent fractional shortening (FS) were analyzed. The Npr1-/- null mutant mice hearts displayed 6-fold induction of fibrosis compared with wild-type (WT) Npr1+/+ mice. Furthermore, the increased expression of fibrotic markers as observed, including connective tissue growth factor (CTGF, 5-fold), α-smooth muscle actin (α-SMA, 4-fold) and TGF-β receptor I (TGF-βRI, 4-fold), TGF-β receptor II (TGF-βRII, 3.5-fold) and Smad2/3 proteins in Npr1-/- mice hearts compared with WT control mice. However, treatment with TGF-β receptor antagonist, GW788388, significantly prevented the cardiac fibrosis and down-regulated the expression of fibrotic markers and Smad proteins in Npr1-/- mice compared to vehicle-treated WT controls. The results of the present study suggest that the activation of cardiac fibrosis in Npr1-/- mice is mainly triggered through TGF-β mediated Smad-dependent pathways.


Sign in / Sign up

Export Citation Format

Share Document