Visual appearance of a virtual upper limb modulates the temperature of the real hand: a thermal imaging study in Immersive Virtual Reality

2017 ◽  
Vol 45 (9) ◽  
pp. 1141-1151 ◽  
Author(s):  
Gaetano Tieri ◽  
Annamaria Gioia ◽  
Michele Scandola ◽  
Enea F. Pavone ◽  
Salvatore M. Aglioti
Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


2020 ◽  
Author(s):  
Paola Araiza-Alba ◽  
Therese Keane ◽  
Jennifer L Beaudry ◽  
Jordy Kaufman

In recent years, immersive virtual reality technology (IVR) has seen a substantial improvement in its quality, affordability, and ability to simulate the real world. Virtual reality in psychology can be used for three basic purposes: immersion, simulation, and a combination of both. While the psychological implementations of IVR have been predominately used with adults, this review seeks to update our knowledge about the uses and effectiveness of IVR with children. Specifically, its use as a tool for pain distraction, neuropsychological assessment, and skills training. Results showed that IVR is a useful tool when it is used either for immersive or simulative purposes (e.g., pain distraction, neuropsychological assessment), but when its use requires both simulation (of the real world) and immersion (e.g., a vivid environment), it is trickier to implement effectively.


2020 ◽  
Vol 123 (1) ◽  
pp. 420-427 ◽  
Author(s):  
Alessandro Monti ◽  
Giuseppina Porciello ◽  
Gaetano Tieri ◽  
Salvatore M. Aglioti

Recent theories posit that physiological signals contribute to corporeal awareness, the basic feeling that one has a body (body ownership) that acts according to one’s will (body agency) and occupies a specific position (body location). Combining physiological recordings with immersive virtual reality, we found that an ecological mapping of real respiratory patterns onto a virtual body illusorily changes corporeal awareness. This new way of inducing a respiratory bodily illusion, called “embreathment,” revealed that breathing is almost as important as visual appearance for inducing body ownership and more important than any other cue for body agency. These effects were moderated by individual levels of interoception, as assessed through a standard heartbeat-counting task and a new “pneumoception” task. By showing that respiratory, visual, and spatial signals exert a specific and weighted influence on the fundamental feeling that one is an embodied agent, we pave the way for a comprehensive hierarchical model of corporeal awareness. NEW & NOTEWORTHY Our body is the only object we sense from the inside; however, it is unclear how much inner physiology contributes to the global sensation of having a body and controlling it. We combine respiration recordings with immersive virtual reality and find that making a virtual body breathe like the real body gives an illusory sense of ownership and agency over the avatar, elucidating the role of a key physiological process like breathing in corporeal awareness.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Maram AlMousa ◽  
Hend S. Al-Khalifa ◽  
Hana AlSobayel

Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of nonimmersive virtual reality- (VR-) based rehabilitation systems, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the elicited requirements of a fully immersive VR-based rehabilitation system that will be designed for domestic upper limb stroke patients; we will also provide an initial conceptual prototype of the proposed system.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker ◽  
Sven Bilen ◽  
Janis Terpenny ◽  
Chimay Anumba

Immersive virtual reality systems have the potential to transform the manner in which designers create prototypes and collaborate in teams. Using technologies such as the Oculus Rift or the HTC Vive, a designer can attain a sense of “presence” and “immersion” typically not experienced by traditional CAD-based platforms. However, one of the fundamental challenges of creating a high quality immersive virtual reality experience is actually creating the immersive virtual reality environment itself. Typically, designers spend a considerable amount of time manually designing virtual models that replicate physical, real world artifacts. While there exists the ability to import standard 3D models into these immersive virtual reality environments, these models are typically generic in nature and do not represent the designer’s intent. To mitigate these challenges, the authors of this work propose the real time translation of physical objects into an immersive virtual reality environment using readily available RGB-D sensing systems and standard networking connections. The emergence of commercial, off-the shelf RGB-D sensing systems such as the Microsoft Kinect, have enabled the rapid 3D reconstruction of physical environments. The authors present a methodology that employs 3D mesh reconstruction algorithms and real time rendering techniques to capture physical objects in the real world and represent their 3D reconstruction in an immersive virtual realilty environment with which the user can then interact. A case study involving a commodity RGB-D sensor and multiple computers connected through standard TCP internet connections is presented to demonstrate the viability of the proposed methodology.


2020 ◽  
Vol 44 (4) ◽  
pp. 311-319
Author(s):  
Da Young Lim ◽  
Dong Min Hwang ◽  
Kang Hee Cho ◽  
Chang Won Moon ◽  
So Young Ahn

Objective To determine whether a fully immersive virtual reality (VR) intervention combined with conventional rehabilitation (CR) can improve upper limb function more than CR alone in patients with spinal cord injury (SCI), we conducted a prospective, randomized, controlled clinical trial.Methods Participants were randomly assigned to either the control group (CG; n=10) or experimental group (EG; n=10). The participants in the CG received 60 minutes of conventional therapy per day, 4 days per week for 4 weeks, whereas those in the EG received 30 minutes of VR training and 30 minutes of conventional therapy per day, 4 days per week for 4 weeks. The clinical outcome measures included Medical Research Council grade, the American Spinal Injury Association upper extremity motor score (ASIA-UEMS), and scores in the Hand Strength Test, Box and Block Test, Nine-Hole Peg Test, Action Research Arm Test, and Korean version of the Spinal Cord Independence Measure (K-SCIM). The assessments were performed at the beginning (T0) and end of the intervention (T1).Results Grip power and K-SCIM score significantly improved in the EG after the intervention. When comparing differences between the groups, elbow extensor, wrist extensor, ASIA-UEMS, grip power, lateral pinch power, and palmar pinch power were all significantly improved.Conclusion VR training of upper limb function after SCI can provide an acceptable adjunctive rehabilitation method without significant adverse effects.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Paola Araiza ◽  
Therese Keane ◽  
Jennifer L. Beaudry ◽  
Jordy Kaufman

In recent years, immersive virtual reality technology (IVR) has seen a substantial improvement in its quality, affordability, and ability to simulate the real world. Virtual reality in psychology can be used for three basic purposes: immersion, simulation, and a combination of both. While the psychological implementations of IVR have been predominately used with adults, this review seeks to update our knowledge about the uses and effectiveness of IVR with children. Specifically, its use as a tool for pain distraction, neuropsychological assessment, and skills training. Results showed that IVR is a useful tool when it is used either for immersive or simulative purposes (e.g., pain distraction, neuropsychological assessment), but when its use requires both simulation (of the real world) and immersion (e.g., a vivid environment), it is trickier to implement effectively.


Sign in / Sign up

Export Citation Format

Share Document