scholarly journals Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing

FEBS Journal ◽  
2014 ◽  
Vol 281 (22) ◽  
pp. 5054-5062 ◽  
Author(s):  
Guang Feng ◽  
Daifeng Hao ◽  
Jiake Chai
2010 ◽  
Vol 126 ◽  
pp. 105
Author(s):  
Robert J. Allen ◽  
Ilyse D. Haberman ◽  
Clarence D. Lin ◽  
Orlando Canizares ◽  
Jeffrey Schachar ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12283
Author(s):  
Jaromír Vašíček ◽  
Andrej Baláži ◽  
Mária Tirpáková ◽  
Andrea Svoradová ◽  
Ľubomír Ondruška ◽  
...  

Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) have been studied several years for their immunomodulatory effect through the paracrine mechanism and cytokine secretion. In combination with endothelial progenitor cells (EPCs), MSCs have great therapeutical potential for the repair of endothelium and wound healing. However, little is known about the cytokine profile of rabbit AT-MSCs or even EPCs. The aim of this study was to analyze the secretomes of these rabbit stem/progenitor cells. A large-scale human cytokine array (up to 80 cytokines) was used to identify and compare cytokines secreted into conditioned media of human and rabbit AT-MSCs as well as HUVECs and rabbit EPCs. Few cytokines were highly expressed by human AT-MSCs (TIMP-2, TIMP-1), HUVECs (MCP-1, TIMP-2, GRO, Angiogenin, IL-8, TIMP-1), or by rabbit EPCs (TIMP-2). Several cytokines have moderate expression by human (MCP-1, GRO, Angiogenin, TGF-β 2, IL-8, LIF, IL-6, Osteopontin, Osteoprotegerin) and rabbit AT-MSCs (TIMP-2, TGF-β 2, LIF, Osteopontin, IL-8, IL-5, IL-3) or by HUVECs (IL-6, MIF, TGF-β 2, GCP-2, IGFBP-2, Osteoprotegerin, EGF, LIF, PDGF-BB, MCP-3, Osteopontin, Leptin, IL-5, ENA-78, TNF- β) and rabbit EPCs (TGF-β 2, Osteopontin, GRO, LIF, IL-8, IL-5, IL-3). In conclusion, the proposed method seems to be useful for the secretome analysis of rabbit stem/progenitor cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Zhang ◽  
Yu Zhu ◽  
Shengdi Lu ◽  
Wanrun Zhong ◽  
Yanmao Wang ◽  
...  

Diabetic wounds, as a kind of refractory wound, are very difficult to heal. Both endothelial progenitor cell (EPC) transplantation and platelet-rich plasma (PRP) can improve diabetic wound healing to some extent. However, PRP application cannot provide reparative cells, while EPC transplantation cannot replenish the required growth factors for wound healing. Thus, when applied alone, neither of these factors is sufficient for effective wound healing. Furthermore, the proliferation, differentiation, and fate of the transplanted EPCs are not well known. Therefore, in this study, we examined the efficacy of combined PRP application with EPC transplantation in diabetic wound healing. Our results indicated that PRP application improved EPC proliferation and migration. The Notch signaling pathway plays a key role in the regulation of the proliferation and differentiation of stem cells and angiogenesis in wound healing. The application of PRP upregulated the Notch pathway-related gene and protein expression in EPCs. Furthermore, experiments with shNotch1-transfected EPCs indicated that PRP enhanced the function of EPCs by upregulating the Notch1 signaling pathway. In vivo studies further indicated that the combination of PRP and EPC transplantation increased neovascularization, reduced wound size, and improved healing in rat wound models. Thus, PRP application can provide the necessary growth factors for wound healing, while EPC transplantation offers the required cells, indicating that the combination of both is a potent novel approach for treating diabetic wounds.


Sign in / Sign up

Export Citation Format

Share Document