scholarly journals Prior residence, territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.)

1999 ◽  
Vol 55 (4) ◽  
pp. 784-794 ◽  
Author(s):  
C. J. Cutts ◽  
B. Brembs ◽  
N. B. Metcalfe ◽  
A. C. Taylor
1999 ◽  
Vol 56 (12) ◽  
pp. 2397-2403 ◽  
Author(s):  
Sveinn K Valdimarsson ◽  
Neil B Metcalfe

Traditionally, behavioural studies on juvenile Atlantic salmon, Salmo salar, have been conducted during the day in summer. It is known that Atlantic salmon become nocturnal in winter, but very little is known about their behaviour at that time. Therefore, observations in a seminatural stream were carried out during the day and night, from February to June, comparing diel and seasonal differences in behaviour between fish adopting alternative life history strategies. The results showed a general trend for more activity in spring than in winter, and the fish were found to be foraging at surprisingly low light levels. There were differences in relative feeding rate between the life history strategies; the early migrant fish foraged mostly during the day whereas the delayed migrant fish did more foraging at night. There is some evidence that the early migrant fish made fewer feeding attempts over the winter, which is surprising, since they grow faster over that period. This suggests differences in foraging efficiency, which could contribute to the separation into these two life history strategies.


1977 ◽  
Vol 34 (1) ◽  
pp. 139-141 ◽  
Author(s):  
V. Zitko ◽  
W. G. Carson

The incipient lethal level (ILL) of zinc to juvenile Atlantic salmon (Salmo salar) in fresh water at a water hardness of 14 mg/ℓ varies from 150 to 1000 μg/ℓ as a function of season and developmental stage of the fish. The ILL increases from 500 to 1000 μg/ℓ during the 1st yr and decreases to 150 μg/ℓ in the following spring. The more sensitive stage in the salmon's life history, evidenced by decrease of ILL coincides with and is probably related to initial stages of the parr–smolt transformation.


2001 ◽  
Vol 58 (4) ◽  
pp. 762-768 ◽  
Author(s):  
Ian J Morgan ◽  
Neil B Metcalfe

We used a horizontal temperature gradient to investigate the effect of alternate life history strategies and nutritional state on the preferred temperature of overwintering juvenile Atlantic salmon (Salmo salar L.). Contrary to our prediction, there was no significant difference in final preferred temperature between juvenile Atlantic salmon that will migrate to sea the following spring (early migrants) and those that show reduced growth and delay migration for at least another year (delayed migrants). Both migrant groups preferentially selected relatively low temperatures (<10°C), likely owing to their low appetite and growth rates. Food deprivation resulted in a significant increase, rather than our predicted decrease, in the final preferred temperature of the juvenile Atlantic salmon of approximately 2°C. We suggest that this is due to the need for an increased foraging effort to offset the projected energy deficit later in the winter. The final preferred temperature of delayed migrants increased from winter to spring, as predicted, coincident with increases in natural food availability and endogenous seasonal increases in appetite and growth rates. We conclude that the preferred temperature of overwintering juvenile Atlantic salmon may be influenced by future energetic requirements rather than the current level of energy reserves.


2004 ◽  
Vol 61 (12) ◽  
pp. 2288-2301 ◽  
Author(s):  
Benjamin H Letcher ◽  
Todd Dubreuil ◽  
Matthew J O'Donnell ◽  
Mariska Obedzinski ◽  
Kitty Griswold ◽  
...  

We tested the influence of introduction time and the manner of introduction on growth, survival, and life-history expression of Atlantic salmon (Salmo salar). Introduction treatments included three fry stocking times and stream rearing of embryos. Despite poor growth conditions during the early stocking period, early-stocked fish were larger throughout the entire study period, likely the result of prior residence advantage. This interpretation was reinforced by the laboratory study, where early-stocked fish outgrew late-stocked fish when reared together, but not when they were reared separately. In contrast to growth, abundance of stocked fish was greatest for fish stocked during the middle period, and this stocking group produced the greatest number of smolts. Despite smaller size, survival of stream-incubated fish was generally greater than survival of stocked fish. Introduction timing had a pronounced effect on smolt age but a weak effect on extent of parr maturation. Overall, these observations indicate that small differences (~2 weeks) in introduction time can have long-term effects on size, survival, and life-history expression. Results suggest stabilizing selection on introduction times, mediated by the interaction between prior residence (advantage to fish introduced earlier) and habitat suitability (advantage to fish introduced later).


2020 ◽  
Author(s):  
Kenyon Mobley ◽  
Tutku Aykanat ◽  
Yann Czorlich ◽  
Andrew House ◽  
Johanna Kurko ◽  
...  

Over the past decades, Atlantic salmon (Salmo salar, Salmonidae) has emerged as a model system for sexual maturation research, owing to the high diversity of life history strategies, knowledge of trait genetic architecture, and their high economic value. The aim of this synthesis is to summarize the current state of knowledge concerning maturation in Atlantic salmon, outline knowledge gaps, and provide a roadmap for future work. Our summary of the current state of knowledge: 1) maturation in Atlantic salmon takes place over the entire life cycle, starting as early as embryo development, 2) variation in the timing of maturation promotes diversity in life history strategies, 3) ecological and genetic factors influence maturation, 4) maturation processes are sex-specific and may have fitness consequences for each sex, 5) genomic studies have identified large-effect loci that influence maturation, 6) the brain-pituitary-gonadal axis regulates molecular and physiological processes of maturation, 7) maturation is a key component of fisheries, aquaculture, conservation, and management, and 8) climate change, fishing pressure, and other anthropogenic stressors likely have major effects on salmon maturation. In the future, maturation research should focus on a broader diversity of life history stages, including early embryonic development, the marine phase and return migration. We recommend studies combining ecological and genetic approaches will help disentangle their relative contributions to maturation. Functional validation of large-effect loci should reveal how these genes influence maturation. Finally, continued research in maturation will improve our predictions concerning how salmon may adapt to fisheries, climate change, and other future challenges.


Sign in / Sign up

Export Citation Format

Share Document