scholarly journals The dynamical state of dark matter haloes in cosmological simulations - I. Correlations with mass assembly history

2011 ◽  
Vol 419 (2) ◽  
pp. 1576-1587 ◽  
Author(s):  
Chris Power ◽  
Alexander Knebe ◽  
Steffen R. Knollmann
2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


2015 ◽  
Vol 450 (2) ◽  
pp. 1604-1617 ◽  
Author(s):  
Zhankui Lu ◽  
H. J. Mo ◽  
Yu Lu ◽  
Neal Katz ◽  
Martin D. Weinberg ◽  
...  

2013 ◽  
Vol 430 (1) ◽  
pp. 81-104 ◽  
Author(s):  
Miguel Rocha ◽  
Annika H. G. Peter ◽  
James S. Bullock ◽  
Manoj Kaplinghat ◽  
Shea Garrison-Kimmel ◽  
...  

2009 ◽  
Vol 397 (1) ◽  
pp. 44-51 ◽  
Author(s):  
J. I. Read ◽  
L. Mayer ◽  
A. M. Brooks ◽  
F. Governato ◽  
G. Lake

2019 ◽  
Vol 488 (1) ◽  
pp. L123-L128 ◽  
Author(s):  
Aaron D Ludlow ◽  
Joop Schaye ◽  
Matthieu Schaller ◽  
Jack Richings

ABSTRACTThe impact of 2-body scattering on the innermost density profiles of dark matter haloes is well established. We use a suite of cosmological simulations and idealized numerical experiments to show that 2-body scattering is exacerbated in situations where there are two species of unequal mass. This is a consequence of mass segregation and reflects a flow of kinetic energy from the more to less massive particles. This has important implications for the interpretation of galaxy sizes in cosmological hydrodynamic simulations, which nearly always model stars with less massive particles than are used for the dark matter. We compare idealized models as well as simulations from the eagle project that differ only in the mass resolution of the dark matter component, but keep subgrid physics, baryonic mass resolution, and gravitational force softening fixed. If the dark matter particle mass exceeds the mass of stellar particles, then galaxy sizes – quantified by their projected half-mass radii, R50 – increase systematically with time until R50 exceeds a small fraction of the redshift-dependent mean interparticle separation, l (${\rm R_{50}} \gtrsim 0.05\times l$). Our conclusions should also apply to simulations that adopt different hydrodynamic solvers, subgrid physics, or adaptive softening, but in that case may need quantitative revision. Any simulation employing a stellar-to-dark matter particle mass ratio greater than unity will escalate spurious energy transfer from dark matter to baryons on small scales.


2020 ◽  
Vol 493 (3) ◽  
pp. 4551-4569 ◽  
Author(s):  
Danail Obreschkow ◽  
Pascal J Elahi ◽  
Claudia del P Lagos ◽  
Rhys J J Poulton ◽  
Aaron D Ludlow

ABSTRACT Linking the properties of galaxies to the assembly history of their dark matter haloes is a central aim of galaxy evolution theory. This paper introduces a dimensionless parameter s ∈ [0, 1], the ‘tree entropy’, to parametrize the geometry of a halo’s entire mass assembly hierarchy, building on a generalization of Shannon’s information entropy. By construction, the minimum entropy (s = 0) corresponds to smoothly assembled haloes without any mergers. In contrast, the highest entropy (s = 1) represents haloes grown purely by equal-mass binary mergers. Using simulated merger trees extracted from the cosmological N-body simulation SURFS, we compute the natural distribution of s, a skewed bell curve peaking near s = 0.4. This distribution exhibits weak dependences on halo mass M and redshift z, which can be reduced to a single dependence on the relative peak height δc/σ(M, z) in the matter perturbation field. By exploring the correlations between s and global galaxy properties generated by the SHARK semi-analytic model, we find that s contains a significant amount of information on the morphology of galaxies – in fact more information than the spin, concentration, and assembly time of the halo. Therefore, the tree entropy provides an information-rich link between galaxies and their dark matter haloes.


2003 ◽  
Vol 208 ◽  
pp. 391-392
Author(s):  
Andreea S. Font ◽  
Julio F. Navarro

We investigate recent suggestions that substructure in cold dark matter (CDM) halos has potentially destructive effects on galactic disks. N-body simulations of disk/bulge models of the Milky Way, embedded in a dark matter halo with substructure similar to that found in cosmological simulations, show that tides from substructure halos play only a minor role in the dynamical heating of the stellar disk. This suggests that substructure might not preclude CDM halos from being acceptable hosts of thin stellar disks.


2020 ◽  
Vol 495 (3) ◽  
pp. 3002-3013 ◽  
Author(s):  
Alexander Knebe ◽  
Matías Gámez-Marín ◽  
Frazer R Pearce ◽  
Weiguang Cui ◽  
Kai Hoffmann ◽  
...  

ABSTRACT Using 324 numerically modelled galaxy clusters, we investigate the radial and galaxy–halo alignment of dark matter subhaloes and satellite galaxies orbiting within and around them. We find that radial alignment depends on distance to the centre of the galaxy cluster but appears independent of the dynamical state of the central host cluster. Furthermore, we cannot find a relation between radial alignment of the halo or galaxy shape with its own mass. We report that backsplash galaxies, i.e. objects that have already passed through the cluster radius but are now located in the outskirts, show a stronger radial alignment than infalling objects. We further find that there exists a population of well radially aligned objects passing very close to the central cluster’s centre that were found to be on highly radial orbit.


Sign in / Sign up

Export Citation Format

Share Document