scholarly journals Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor

2006 ◽  
Vol 48 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Pablo A. Manavella ◽  
Agustín L. Arce ◽  
Carlos A. Dezar ◽  
Frédérique Bitton ◽  
Jean-Pierre Renou ◽  
...  
2016 ◽  
Vol 28 (12) ◽  
pp. 1873 ◽  
Author(s):  
Xiao-Feng Sun ◽  
Xing-Hong Sun ◽  
Shun-Feng Cheng ◽  
Jun-Jie Wang ◽  
Yan-Ni Feng ◽  
...  

The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein–protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.


2010 ◽  
Vol 18 ◽  
pp. S124
Author(s):  
C. Bauge ◽  
S. Leclercq ◽  
P. Galera ◽  
K. Boumediene

2017 ◽  
Vol 474 (13) ◽  
pp. 2133-2144 ◽  
Author(s):  
Andrew K.J. Boyce ◽  
Leigh Anne Swayne

In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion- and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervous system. Our recent study demonstrated that elevation of extracellular ATP triggers Panx1 internalization in a concentration- and time-dependent manner. Notably, this effect was sensitive to inhibition of ionotropic P2X7 purinergic receptors (P2X7Rs). Here, we report our novel findings from the detailed investigation of the mechanism underlying P2X7R–Panx1 cross-talk in ATP-stimulated internalization. We demonstrate that extracellular ATP triggers and is required for the clustering of P2X7Rs and Panx1 on Neuro2a cells through an extracellular physical interaction with the Panx1 first extracellular loop (EL1). Importantly, disruption of P2X7R–Panx1 clustering by mutation of tryptophan 74 within the Panx1 EL1 inhibits Panx1 internalization. Notably, P2X7R–Panx1 clustering and internalization are independent of P2X7R-associated intracellular signalling pathways (Ca2+ influx and Src activation). Further analysis revealed that cholesterol is required for ATP-stimulated P2X7R–Panx1 clustering at the cell periphery. Taken together, our data suggest that extracellular ATP induces and is required for Panx1 EL1-mediated, cholesterol-dependent P2X7R–Panx1 clustering and endocytosis. These findings have important implications for understanding the role of Panx1 in the nervous system and provide important new insights into Panx1–P2X7R cross-talk.


2002 ◽  
pp. 411-426 ◽  
Author(s):  
Ranjan Swarup ◽  
Geraint Parry ◽  
Neil Graham ◽  
Trudie Allen ◽  
Malcolm Bennett

Sign in / Sign up

Export Citation Format

Share Document