Grain quality and yield characteristics of D-genome disomic substitution lines in 'Langdon' (Triticum turgidum var. durum)

1995 ◽  
Vol 114 (1) ◽  
pp. 34-39 ◽  
Author(s):  
C.-Y. Liu ◽  
A. J. Rathjen ◽  
K. W. Shepherd ◽  
P. W. Gras ◽  
L. C. Giles
Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1545-1554 ◽  
Author(s):  
J. Li ◽  
D.L. Klindworth ◽  
F. Shireen ◽  
X. Cai ◽  
J. Hu ◽  
...  

The aneuploid stocks of durum wheat ( Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat ( T. aestivum L.) have been developed mainly in ‘Langdon’ (LDN) and ‘Chinese Spring’ (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.


Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 229-233 ◽  
Author(s):  
C. F. Konzak ◽  
L. R. Joppa

The durum wheat (Triticum turgidum L. var. durum) cultivar 'Vic' was treated with the chemical mutagen N-methyl-N′-nitrosourea and among the M2 progeny a mutant with "chocolate chaff" (designated cc) was identified. Genetic analyses indicated that chocolate chaff is due to a single recessive gene mutation. The penetrance of the gene for chocolate chaff was environmentally influenced and varied from dark blotches on the glumes to complete coloration of culms as well as spikes. To determine the chromosomal location of the gene, the mutant was crossed with a set of 'Langdon' durum disomic substitution lines in which each of the 14 A- and B-genome chromosomes of durum wheat were replaced by their respective D-genome homoeologues. The segregation of cc was normal in all of the crosses except for those with the 7D(7A) and 7D(7B) lines. Cytogenetic analysis indicated that the gene was located on chromosome 7B, and that chromosome 7D has a gene that prevents the expression of cc when present in one or more copies. It was shown that the 'Langdon' D-genome disomic substitution lines can be used to determine the chromosomal location of genes in tetraploid wheat.Key words: Triticum turgidum, aneuploid, chromosome substitution, monosomic, cytogenetics.


Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 222-228 ◽  
Author(s):  
L. R. Joppa ◽  
N. D. Williams

A complete set of disomic substitution lines have been developed in the tetraploid wheat cultivar Langdon (Triticum turgidum L. var. durum). These aneuploid lines each have a pair of durum wheat homoeologues replaced by a pair of D-genome chromosomes transferred from 'Chinese Spring' hexaploid wheat. They can be used to determine the chromosomal location of genes, to transfer chromosomes from one cultivar or line of tetraploid wheat to another, to study the cytogenetics of tetraploid wheat, to determine gene linkages, and to identify chromosomes involved in translocations. Their phenotypic characteristics, their cytogenetic behavior, and suggested methods for their use are described.Key words: cytogenetics, monosomic, chromosome transmission, telosomic, chromosome substitution.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 515-520 ◽  
Author(s):  
D. L. Klindworth ◽  
N. D. Williams ◽  
L. R. Joppa

The supernumerary spikelet (SS) trait of durum wheat (Triticum turgidum L.), including the ramified and four-rowed spike traits, is characterized by an increased number of spikelets per spike. Chromosomal location of the SS gene(s) was determined by crossing the ramified spike line PI349056 to the set of 'Langdon' D-genome disomic substitution lines. Double monosomic F1 plants were backcrossed to PI349056 and the testcross F1 plants were classified for chromosome pairing and spike type. Segregation for spike type was observed in the testcross F2. Data indicated that the major SS gene was located on chromosome 2A. Subsequent crosses with the 'Langdon' 2A telosomics indicated that the major SS gene was located on the short arm of chromosome 2A. Segregation of the testcross F2 indicated that a minor SS gene was located on chromosome 2B. Results also indicated that inhibitors of SS may be located on the D-genome chromosomes and an additional experiment was designed to test this hypothesis. Eight D-genome monosomic addition lines were developed by backcrossing PI349056 from one to three times to plants containing D-genome univalents. The test populations contained two cytological types of plants, disomics having 14 pairs of durum chromosomes and D-genome monosomic additions having 14 pairs of durum chromosomes plus a D-genome monosome. Comparison of these two types of plants indicated that chromosome 2D (from 'Chinese Spring' wheat) had a strong inhibitor of SS expression.Key words: Triticum, branched spike, ramified spike, four-rowed spike, cytogenetics.


Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M Dogramac1-Altuntepe ◽  
P P Jauhar

The objective of this study was to investigate the effect of individual durum wheat (Triticum turgidum L.) chromosomes on crossability with maize (Zea mays L.) and to cytologically characterize the haploids recovered. Fourteen 'Langdon' (LDN) D-genome disomic substitution lines, a LDN Ph mutant (Ph1b ph1b), and normal 'Langdon' were pollinated with maize pollen. After pollination, hormonal treatment was given daily for up to 14 days. Haploid embryos were obtained from all lines and were aseptically cultured. From a total of 55 358 pollinated florets, 895 embryos were obtained. Only 14 of the embryos germinated and developed into healthy plants. Different substitution lines showed varying degrees of success. The most successful was the substitution 5D(5B) for both embryo formation and haploid plantlet production. These results indicate that the substitution of 5D for 5B confers on durum wheat a greater ability to produce haploids. Fluorescent genomic in situ hybridization (GISH) showed that the substitution haploids consisted of 7 A-genome chromosomes, 6 B-genome chromosomes, and 1 D-genome chromosome. Triticum urartu Tum. genomic DNA was efficient in probing the 7 A-genome chromosomes, although the D-genome chromosome also showed intermediate hybridization. This shows a close affinity between the A genome and D genome. We also elucidated the evolutionary translocation involving the chromosomes 4A and 7B that occurred at the time of evolution of durum wheat. We found that the distal segment translocated from chromosome 7B constitutes about 24% of the long arm of 4A.Key words: cyclic translocation 4A·5A·7B, crossability, disomic substitution, fluorescent genomic in situ hybridization (GISH), Triticum turgidum.


2011 ◽  
Vol 41 (No. 2) ◽  
pp. 39-44 ◽  
Author(s):  
N. Watanabe ◽  
N. Takesada ◽  
Y. Fujii ◽  
P. Martinek

The brittle rachis phenotype is of adaptive value in wild grass species because it causes spontaneous spike shattering. The genes on the homoeologous group 3 chromosomes determine the brittle rachis in Triticeae. A few genotypes with brittle rachis have also been found in the cultivated Triticum. Using microsatellite markers, the homoeologous genes for brittle rachis were mapped in hexaploid wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. conv. durum /Desf./) and Aegilops tauschii Coss. On chromosome 3AS, the gene for brittle rachis, Br<sub>2</sub>, was linked with the centromeric marker, Xgwm32, at the distance of 13.3 cM. Br<sub>3 </sub>was located on chromosome 3BS and linked with the centromeric marker,<br />Xgwm72 (14.2 cM). Br<sub>1 </sub>was located on chromosome 3DS. The distance from the centromeric marker Xgdm72 was 23.6 cM. The loci Br<sub>1</sub>, Br<sub>2</sub> and Br<sub>3</sub> determine disarticulation of rachides above the junction of the rachilla with the rachis so that a fragment of rachis is attached below each spikelet. The rachides of Ae. tauschii are brittle at every joint, so that the mature spike disarticulates into barrel type. The brittle rachis was determined by a dominant gene, Br<sup>t</sup>, which was linked to the centromeric marker, Xgdm72 (19.7 cM), on chromosome 3DS. A D-genome introgression line, R-61, was derived from the cross Bet Hashita/Ae. tauschii, whose rachis disarticulated as a wedge type. The gene for brittle rachis of R-61, tentatively designated as Br<sup>61</sup>, was distally located on chromosome 3DS, and was linked with the centromeric marker, Xgdm72 (27.5 cM). We discussed how the brittle rachis of R-61 originated genetically. &nbsp; &nbsp;


2008 ◽  
Vol 88 (6) ◽  
pp. 1065-1071 ◽  
Author(s):  
Qijiao Chen ◽  
Lianquan Zhang ◽  
Zhongwei Yuan ◽  
Zehong Yan ◽  
Youliang Zheng ◽  
...  

Due to the high polymorphisms between synthetic hexaploid wheat (SHW) and common wheat, SHW has been widely used in genetic studies. The transferability of simple sequence repeats (SSR) among common wheat and its donor species, Triticum turgidum and Aegilops tauschii, and their SHW suggested the possibility that some SSRs, specific for a single locus in common wheat, might appear in two or more loci in SHWs. This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping. However, it is largely ignored and never empirically well verified. The present study addressed this issue by using the well-studied SSR marker Xgwm261 as an example. The Xgwm261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring, but generated a 176 bp fragment in the D genome of Ae. tauschii AS60. Chromosomal location and DNA sequence data revealed that the176 bp fragment also donated by 2B chromosome of durum wheat Langdon. These results indicated that although a single 176 bp fragment was appeared in synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60, the fragment contained two different loci, one from chromosome 2D of AS60 and the other from 2B of Langdon which were confirmed by the segregating analysis of SSR Xgwm261 in 185 plants from a F2 population between Syn-SAU-5 and Chinese Spring. If Xgwm261 in Syn-SAU-5 was considered as a single locus in genetic analysis, distorted segregation or incorrect conclusions would be yielded. A proposed strategy to avoid this problem is to include SHW’s parental T. turgidum and Ae. tauschii in SSR analysis as control for polymorphism detection. Key words: Synthetic hexaploid wheat, microsatellite, segregation distortion, Xgwm261, transferability


Sign in / Sign up

Export Citation Format

Share Document