scholarly journals Segregation of Primordial Germ Cells from the Endoderm of the Early Xenopus Embryo by Applying Fibronectin, an Extracellular Matrix, in vitro. (in vitro culture/endodermal mass/extracellular matrix/primordial germ cells/Xenopus laevis)

1986 ◽  
Vol 28 (6) ◽  
pp. 611-618 ◽  
Author(s):  
BRIGITTE CATHALOT ◽  
JEAN-JACQUES BRUSTIS
Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 119-133
Author(s):  
Janet Heasman ◽  
C. C. Wylie

Primordial germ cells (PGCs) of Xenopus laevis have been isolated from early embryos and kept alive in vitro, in order to study the structural basis of their motility, using the transmission and scanning electron microscope. The culture conditions used mimicked as closely as possible the in vivo environment of migrating PGCs, in that isolated PGCs were seeded onto monolayers of amphibian mesentery cells. In these conditions we have demonstrated that: (a) No significant differences were found between the morphology of PGCs in vitro and in vivo. (b) Structural features involved in PGC movement in vitro include (i) the presence of a filamentous substructure, (ii) filopodial and blunt cell processes, (iii) cell surface specializations. These features are also characteristic of migratory PGCs studied in vivo. (c) PGCs in vitro have powers of invasion similar to those of migrating PGCs in vivo. They occasionally become completely surrounded by cells of the monolayer and, in this situation, bear striking resemblance to PGCs moving between mesentery cells to the site of the developing gonad in stage-44 tadpoles. We conclude that as far as it is possible to assess, the behaviour of isolated PGCs in these in vitro conditions mimics their activities in vivo. This allows us to study the ultrastructural basis of their migration.


2003 ◽  
pp. 201-212 ◽  
Author(s):  
Patricia A. Labosky ◽  
Brigid L. M. Hogan

Development ◽  
1976 ◽  
Vol 35 (1) ◽  
pp. 149-157
Author(s):  
C. C. Wylie ◽  
T. B. Roos

Previous studies have described the morphology, including the ultrastructure, of primordial germ cells (PGCs), and the cells with which they associate to form the gonadal ridge, in Xenopus laevis. In order to test their capacity for active movement we have studied single, isolated PGCs in vitro. Time-lapse studies of these cells reveal that they are motile, using broad cytoplasmic processes. The fact that these cells are very large and easy to manipulate in vitro makes them an attractive subject of study, particularly with respect to the mechanism of their movement and the surface phenomena which guide them to the site of the gonadal ridge.


1997 ◽  
Vol 138 (2) ◽  
pp. 471-480 ◽  
Author(s):  
Martín I. García-Castro ◽  
Robert Anderson ◽  
Janet Heasman ◽  
Christopher Wylie

Cells are known to bind to individual extracellular matrix glycoproteins in a complex and poorly understood way. Overall strength of adhesion is thought to be mediated by a combinatorial mechanism, involving adhesion of a cell to a variety of binding sites on the target glycoproteins. During migration in embryos, cells must alter their overall adhesiveness to the substrate to allow locomotion. The mechanism by which this is accomplished is not well understood. During early development, the cells destined to form the gametes, the primordial germ cells (PGCs), migrate from the developing hind gut to the site where the gonad will form. We have used whole-mount immunocytochemistry to study the changing distribution of three extracellular matrix glycoproteins, collagen IV, fibronectin, and laminin, during PGC migration and correlated this with quantitative assays of adhesiveness of PGCs to each of these. We show that PGCs change their strength of adhesion to each glycoprotein differentially during these stages. Furthermore, we show that PGCs interact with a discrete tract of laminin at the end of migration. Closer analysis of the adhesion of PGCs to laminin revealed that PGCs adhere particularly strongly to the E3 domain of laminin, and blocking experiments in vitro suggest that they adhere to this domain using a cell surface proteoglycan.


Biology Open ◽  
2013 ◽  
Vol 2 (12) ◽  
pp. 1279-1287 ◽  
Author(s):  
A. Dzementsei ◽  
D. Schneider ◽  
A. Janshoff ◽  
T. Pieler

2019 ◽  
Vol 98 (4) ◽  
pp. 1820-1832 ◽  
Author(s):  
Yi-Chen Chen ◽  
Shau-Ping Lin ◽  
Yi-Ying Chang ◽  
Wei-Peng Chang ◽  
Liang-Yuan Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document