Models for spring migration of two aphid species Sitobion avenae (F.) and Rhopalosiphum padi (L.) infesting cereals in areas where they are entirely holocyclic

2006 ◽  
Vol 8 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Lars Monrad Hansen
Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 54 ◽  
Author(s):  
Ibtissem Ben Fekih ◽  
Annette Bruun Jensen ◽  
Sonia Boukhris-Bouhachem ◽  
Gabor Pozsgai ◽  
Salah Rezgui ◽  
...  

Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field. Healthy colonies of the two aphid species were exposed to the same conidial shower of P. neoaphidis or E. planchoniana, in both cases from a cadaver of S. avenae. The experiments were performed under LD 18:6 h at 21 °C and a successful transmission was monitored for a period of nine days after initial exposure. Susceptibility of both S. avenae and R. padi to fungal infection showed a sigmoid trend. The fitted nonlinear model showed that the conspecific host, S. avenae, was more susceptible to E. planchoniana infection than the heterospecific host R. padi, was. In the case of P. neoaphidis, LT50 for S. avenae was 5.0 days compared to 5.9 days for R. padi. For E. planchoniana, the LT50 for S. avenae was 4.9 days, while the measured infection level in R. padi was always below 50 percent. Our results suggest that transmission from conspecific aphid host to heterospecific aphid host can occur in the field, but with expected highest transmission success to the conspecific host.


2016 ◽  
Vol 106 (4) ◽  
pp. 551-559 ◽  
Author(s):  
Y.-H. Lu ◽  
X.-S. Zheng ◽  
X.-W. Gao

AbstractThe aphid species Sitobion avenae and Rhopalosiphum padi are the most important pests in wheat growing regions of many countries. In this study, we investigated the sublethal effects of imidacloprid on fecundity, longevity, and enzyme activity in both aphid species by comparing 3-h exposure for one or three generations. Our results indicated that 3-h exposure to sublethal doses of imidacloprid for one generation had no discernible effect on the survival, fecundity, longevity, or enzyme activity levels of aphids. However, when pulse exposures to imidacloprid were sustained over three generations, both fecundity and longevity were significantly decreased in both S. avenae and R. padi. Interestingly, the fecundity of R. padi had almost recovered by the F5 generation, but its longevity was still deleteriously affected. These results indicated that R. padi laid eggs in shorter time lags and has a more fast resilience. The change in reproduction behavior may be a phenomenon of R. padi to compensate its early death. If this is stable for the next generation, it means that the next generation is more competitive than unexposed populations, which could be the reason underlying population outbreaks that occur after longer-term exposure to an insecticide. This laboratory-based study highlights the sublethal effects of imidacloprid on the longevity and fecundity of descendants and provides an empirical basis from which to consider management decisions for chemical control in the field.


1987 ◽  
Vol 77 (1) ◽  
pp. 35-43 ◽  
Author(s):  
C. T. Williams

AbstractThe mid-winter development, reproduction and survival of field-acclimatized viviparae of Sitobion avenae (F.) and Rhopalosiphum padi (L.) on leaves of tillering wheat and perennial ryegrass (Lolium perenne) plants at similar growth stages were compared by monitoring batches of aphids in clip-cages in field plots in southern England. For both aphid species, survival, total fecundity and reproductive rate were much higher on wheat than on L. perenne, and on both host-plants they were much higher for S. avenae than for R. padi. Development times (in day-degrees) were longer on L. perenne than on wheat, and on both host-plants were longer for R. padi than for S. avenae, though these differences were less marked. Comparison of the results with those of earlier studies suggests that large changes in cereal aphid performance occur between summer and winter and that these are both aphid-specific and host-plant-specific.


2007 ◽  
Vol 139 (6) ◽  
pp. 850-863 ◽  
Author(s):  
Samuel M. Migui ◽  
Robert J. Lamb

AbstractThe susceptibilities of genetically diverse Canadian spring wheats, Triticum aestivum L. and Triticum durum Desf., to three aphid species, Rhopalosiphum padi (L.), Sitobion avenae (Fabricius), and Schizaphis graminum (Rondani), were investigated. Trophic interactions measured as changes in biomass of aphids and wheat plants were used to quantify levels of resistance, components of resistance, and impact of aphids on yield. Plants in field cages were infested with small numbers of aphids for 21 days at heading. These plants were usually more suitable for the development of S. avenae and S. graminum than of R. padi. Partial resistance, measured as seed production by infested plants as a proportion of that by a control, varied from 11% to 59% for different aphid species and wheat classes when all wheat plants were infested at the same stage. Cultivars within wheat classes responded similarly to each of the aphid species. None of the wheat cultivars showed agriculturally effective levels of antibiosis. The specific impact of each aphid species and wheat class varied from 5 to 15 mg of plant biomass lost for each milligram of biomass gained by the aphids. Canadian Western Red Spring wheat had a lower specific impact and therefore was more tolerant to aphids than the other two classes, but not tolerant enough to avoid economic damage at the aphid densities observed. Plants did not compensate for feeding damage after aphid feeding ceased, based on the higher specific impacts observed for mature plants than for plants that were heading. The interactions between aphids and plants show that current economic thresholds probably underestimate the damage caused by cereal aphids to Canadian spring wheat.


2011 ◽  
Vol 39 (No. 2) ◽  
pp. 61-64 ◽  
Author(s):  
V. Jarošík ◽  
A. Honěk ◽  
A. Tichopád

Population growths of three aphid species colonising winter wheat stands, Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae, were analysed by regression method. The calculations were based on counts in 268 winter wheat plots at 3 or 7 day intervals over 10 (leaves) or 6 (ears) years. The population dynamics of a particular species differed widely between years. Density independent exponential growth of the population was most common, but its rate differed significantly between species, and for S. avenae also between populations on leaves and ears, on which the populations grew fastest. Field estimates of the intrinsic rate of increase derived from the exponential growths ranged between 0.010–0.026 in M. dirhodum, 0.0071–0.011 in R. padi, and between 0.00078–0.0061 and 0.0015–0.13 in S. avenae on leaves and ears, respectively. In the populations with the most vigorous population growth, S. avenae on ears and M. dirhodum on leaves, the rate of population increase significantly decreased with increasing aphid density.  


1983 ◽  
Vol 73 (1) ◽  
pp. 107-115 ◽  
Author(s):  
M. F. Stribley ◽  
G. D. MOORES ◽  
A. L. DEVONSHIRE ◽  
R. M. SAWICKI

AbstractBaseline toxicity measurements established discriminating concentrations of pirimicarb and demeton-S-methyl guaranteed to kill susceptible examples of Aphis fabae Scop., Sitobion avenae (F.), Metopolophium dirhodum (Wlk.) and Rhopalosiphum padi (L.) in the dip-test, the FAO-recommended method for detecting resistance in aphids. There was no evidence for resistance to either insecticide in field-collected populations of aphids from various parts of the UK or amongst variants of S. avenae characterised by staining their esterases after electrophoresis. New, simple techniques for rearing large numbers of colonies of cereal aphids are described.


2020 ◽  
Vol 71 (9) ◽  
pp. 2796-2807 ◽  
Author(s):  
Carmen Escudero-Martinez ◽  
Patricia A Rodriguez ◽  
Shan Liu ◽  
Pablo A Santos ◽  
Jennifer Stephens ◽  
...  

Abstract Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While ‘omics’ approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi–barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant–aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.


Sign in / Sign up

Export Citation Format

Share Document